

February 28, 2019 RRM Project# IA771

Ms. Ashley Schweickart MidPen Housing Corp. Watsonville Development Office 275 Main Street, Suite 204 Watsonville, California 95076

Re: Limited Soil Vapor Investigation (Phase II)

1412, 1438, 1500 and 1514 Capitola Road APNs 026-741-12, 026-741-13, 026-741-14 and 026-741-15 Unincorporated Census-Designated Place of Live Oak Santa Cruz County, California

Dear Ms. Schweickart:

This letter report, prepared by Remediation Risk Management, Inc. (RRM), presents the results of a limited soil vapor investigation (Phase II) performed at the referenced property (Figure 1). This Phase II was conducted subsequent to completion of a Phase I environmental site assessment (ESA) of the property where petroleum hydrocarbons were confirmed to exist on a nearby parcel (Former Live Oak Texaco, 1671 Capitola Road Avenue, Figure 2). Based on the documented cleanup history at the Former Live Oak Texaco, it is possible that contamination from this site may have impacted soil, soil gas, and/or groundwater beneath the property. As a due diligence condition for obtaining project funding for redevelopment of the property, MidPen requested a subsurface investigation to determine if the property has been impacted by migrating contaminants from an offsite source. Summarized below is a description of the property and its background, the scope of work performed, the field and laboratory results, and our conclusions and recommendations. Supporting documentation is attached.

PROPERTY DESCRIPTION AND BACKGROUND

The property is comprised of four parcels totaling approximately 3.7 acres, situated along Capitola Road, in the unincorporated, census-designated place of Live Oak, Santa Cruz County, California. The property parcels are assigned assessor's parcel numbers (APNs) 026-741-12 (1412 Capitola Road), 026-741-13 (1438 Capitola Road), 026-741-14 (1500 Capitola Road), and 026-741-15 (1514 Capitola Road). The property is set in a mixed commercial and residential neighborhood. Two small houses occupy the north half of the parcels at 1438 and 1500 Capitola Road; the south half of these parcels and the parcels at 1412 and 1514 Capitola Road are currently vacant and undeveloped. The west and south property boundaries are fenced with wood, chain-link, or wire fencing. Chain link or wire fencing oriented north to south has been constructed along the north half of the three common parcel boundaries separating the four parcels from each other. Wire and chain-link fencing-oriented east to west near the middle of the

parcels at 1438 and 1500 Capitola Road, separates the north half of the parcels from the south half. Bollard and chain barriers have been installed by the current owner along the north parcel boundaries at 1412 and 1514 Capitola Road, to prevent vehicle entry onto the vacant parcels. A site location map is presented as Figure 1, and a site map is presented as Figure 2.

The property was initially developed in or about 1916 as four "ranchettes", or small residential farm parcels. Available evidence suggests farming activities, likely consisting of chicken or flower farming, continued on the property from at least the early 1930's through about 1985. In or about that same year, a road construction company leased or rented the parcel at 1438 Capitola Road for the storage, servicing, and repair of their heavy equipment. The road contractor vacated the property in or about 1994, but their tenancy resulted in minor hydrocarbon impacts to surface soils. These releases were properly addressed to the satisfaction of Santa Cruz County Environmental Health Services staff that same year.

SCOPE OF WORK

Soil Vapor Sampling

Two soil vapor borings, designated VP-1-5 and VP-2-5, were advanced along the east boundary of parcel 026-741-15 (1514 Capitola Road) on December 13, 2019 (Figure 2). A 5/8" diameter rod with expendable tip was used to drive a new sample point to 5 feet below ground surface (bgs); the sample point was connected to 0.17" inner diameter Teflon® tubing for sample collection. A hydrated bentonite seal was placed from 3 feet bgs to grade. The well point was tested by applying a vacuum and observing formation pressure to ensure a viable sample could be collected. After waiting two hours for the bentonite grout to properly seal, and for subsurface conditions to equilibrate, RRM staff proceeded to obtain soil vapor samples from the vapor points. A diagram of a typical vapor probe is included in Attachment A.

The sampling procedure entailed connecting sampling manifold to the probe tubing, and stainless-steel Summa™ canisters (6-liter purge canister and 1-liter sample canister) to the manifold. Samples were collected by drawing soil vapor through the probe, tubing, and into the sample manifold attached to the probe tubing using the vacuum provided in the purge canister. The sample manifold was outfitted with push-to-connect type fittings, valves, and vacuum gauges to monitor and control the flow of soil vapor. The laboratory pre-cleaned Summa™ canisters were provided at an initial vacuum of approximately 28 inches of mercury.

Helium tracer leak testing was conducted during purging at each location to check for leaks in the above-ground sampling system. Approximately three calculated volumes of gas were purged from the manifold and probe prior to sample collection. Purge volumes were calculated by summing the internal probe and tube volume, annular space around the probe, and manifold tube volume. Purging and sampling were conducted at rates between 100 and 200 milliliters/minute. Helium tracer leak testing was accomplished by placing a plastic shroud over the sample probe location and sampling manifold, and filling the enclosed space with a mixture of helium and air; the mixture was measured in the shroud using a field meter. A diagram of a typical shroud set-up is included in Attachment A.

RESULTS

Subsurface Conditions

Groundwater was encountered when advancing boring VP-3-5 (Figure 2) at approximately 23 inches bgs, thus rendering it an unviable sample collection location.

Laboratory Analysis

<u>Soil Vapor Laboratory Analyses</u>: BC Laboratories, a California State-certified laboratory, provided the precleaned Summa[™] canisters, and performed all analyses. The soil vapor samples were analyzed for volatile organic compounds (VOCs) using U.S. EPA Modified Method TO-15 and for helium using Modified EPA Method 3C. Analytical results from soil vapor samples are summarized on Table 2, and the laboratory analytical report is included in Attachment A.

Tetrachloroethene (PCE) was detected in samples VP-1-5 and VP-2-5 at concentrations of 8,200 micrograms per cubic meter ($\mu g/m^3$) and 40,000 $\mu g/m^3$, respectively. Styrene was detected in VP-1-5 and VP-2-5 at an estimated concentration of 180 $\mu g/m^3$ and 190 $\mu g/m^3$. Toluene and xylenes were detected in VP-2-5 at 210 $\mu g/m^3$ and 240 $\mu g/m^3$, respectively. Toluene was detected in VP-1-5 at an estimated concentration of 240 $\mu g/m^3$, but xylenes were not detected above laboratory limits.

Other analytes detected in VP-1-5 and VP-2-5 included methyl ethyl ketone (estimated concentration of 120 $\mu g/m^3$) and styrene (estimated 180 $\mu g/m^3$ and 190 $\mu g/m^3$). Other than PCE, no chlorinated solvents were detected in the soil vapor samples.

Helium was detected in VP-2-5 at 620 parts per million by volume (0.062%), indicating the presence of a negligible leak; the results for sample VP-2-5 are considered valid. Helium was not detected in the sample taken from VP-1-5.

Environmental Screening Levels

The laboratory results were compared to risk characterization environmental screening levels (ESLs) published by the San Francisco Bay Regional Water Quality Control Board 1 . The ESLs selected were for residential land use, where ground water is considered a drinking resource (most conservative scenario), and soil impacts were shallow. The presence of a chemical at concentrations in excess of an ESL does not necessarily indicate adverse effects on human health or the environment, and the presence of a chemical at concentrations below the corresponding ESL can be assumed to not pose a significant threat to human health, water resources, or the environment. The only detected compound exceeding their respective ESL concentration was PCE. The most conservative (residential land use) ESL for PCE is $15 \, \mu \text{g/m}^3$. Detected compounds and their respective ESLs are shown on Table 1.

ESLs, or environmental screening levels, refer to tables of concentrations for specific chemical compounds published in: "Screening For Environmental Concerns At Sites With Contaminated Soil And Groundwater", by the Regional Water Quality Control Board, San Francisco Bay region. ESLs consist of tabulated guidance criteria for comparing site-specific concentrations of common environmental contaminants in soil, groundwater, soil gas, and indoor air, to those determined to generally have no unacceptable exposure risk. They have been updated or revised several times since they were initially issued in 2001; most recently in January 2019.

CONCLUSIONS AND RECOMMENDATIONS

From the findings of this investigation, RRM concludes the following:

- PCE was detected in soil gas samples collected from borings VP-1-5 and VP-2-5 at concentrations of 8,200 μg/m³ and 40,000 μg/ m³, respectively.
- Methyl ethyl ketone, styrene, toluene, and xylenes were also detected in soil gas samples
 collected from both borings; concentrations of these compounds did not exceed their respective
 ESLs for the most conservative land use scenario.
- PCE has previously been detected in a sample of groundwater collected from a monitoring well formerly located on the adjacent parcel to the east of the property, approximately 200 feet from the east border of the 1514 Capitola Road parcel. The monitoring well was installed during the environmental investigation phase of the former Live Oak Service (Texaco) at 1671 Capitola Road. PCE was detected in groundwater from the most recent sample at 55 parts per billion (or micrograms per liter), in 2012.

Based on the foregoing conclusions, RRM recommends confirmation soil gas samples be collected in the same locations or near to VP-1-5 and VP-2-5. RRM also recommends collecting grab-groundwater samples in order to evaluate the condition of groundwater beneath the property. Passive soil gas samplers² may also be used to more cost-effectively survey the lateral extent of the subsurface PCE and other compounds, and to gain insight into their relative magnitudes in various locations.

Should you have any questions regarding the contents of this document, please do not hesitate to call RRM at (831) 475-8141.

Sincerely, RRM, Inc.

Steven Clark Senior Geologist CHG 167

Cate Townsend Project Geologist

Attachments:

Table 1 – Soil Gas Analytical Data

Figure 1 - Site Location Map

Figure 2 – Soil Vapor Sampling Locations

Attachment A – Probe and Shroud Diagrams, Field Notes, Laboratory Analytical Report

Passive soil gas samplers involve placement of a sorbent device at the sample collection location, typically a shallow hand-drilled, narrow-gauge borehole, for a set period of time, typically one to two weeks. Upon recovery, the mass of individual chemical species adsorbed onto the sorbent is analytically determined and reported. The devices are useful survey tools; however, the data they yield, mass per time, is not currently accepted by most regulatory agencies for the purpose of vapor plume characterization. Nonetheless, they can be beneficial to focus the later efforts that may involve the installation of more expensive permanent monitoring features such as permanent vapor sampling probes or groundwater monitoring wells.

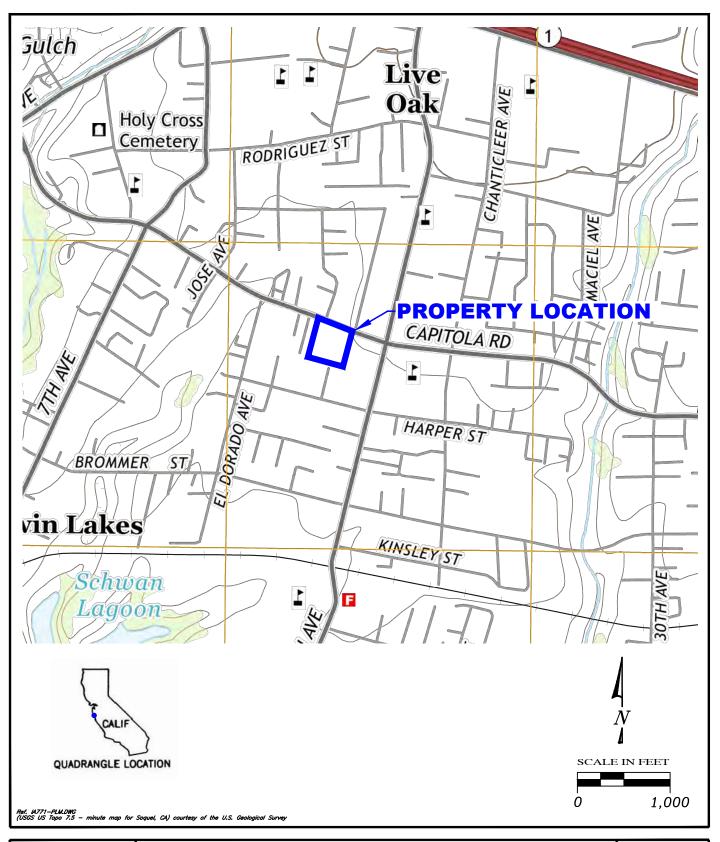
Table 1 Soil Vapor Analytical Data

1514 Capitola Road Santa Cruz, California

Sample Designation	Sample Date	Methyl Ethyl Ketone (μg/m³)	Styrene (μg/m³)	PCE (μg/m³)	Toluene (μg/m³)	Total Xylenes (μg/m³)
VP-1-5	12/13/19	120J	180J	8,200	240J	<260
VP-2-5	12/13/19	120J	190J	40,000	210	240
ESL		170,000	31,000	15	10,000	3,500

Notes:

Only detected analytes were tabulated. See laboratory report for full analyte list.

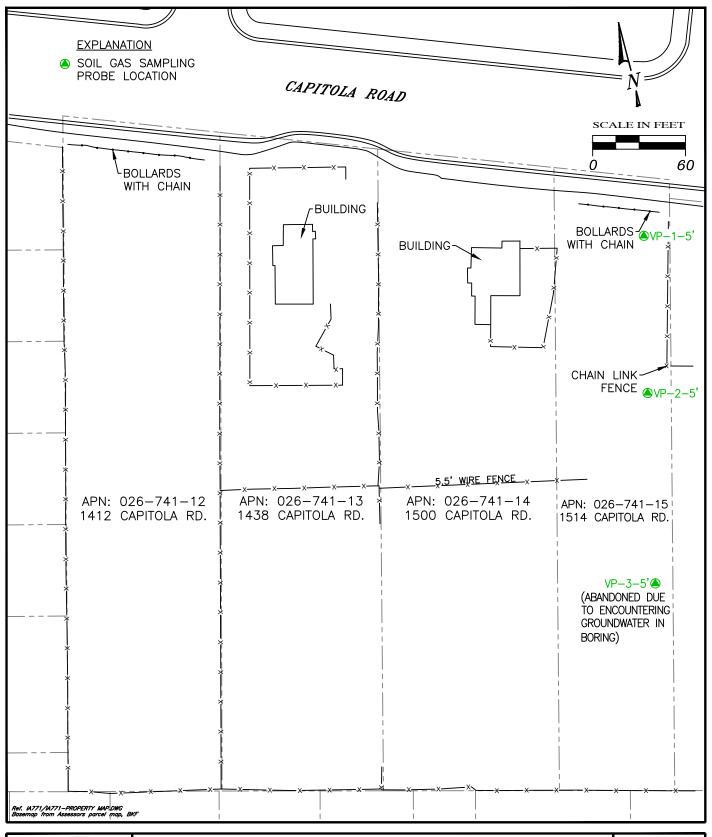

PCE = tetrachloroethene

 $(\mu g/m^3)$ = micrograms per meter cubed

< = Less than the indicated laboratory detection limit

J = Estimated value; detected above the method detection limit, but below the reporting limit.

ESL = Environmental Screening Levels, from *Screening for Environmental Concerns at Sites*with Contaminated Soil and Water, RWQCB, Rev. 01/19; for residential land use case.



PROPERTY LOCATION MAP

PROPERTY OF SANTA CRUZ COUNTY REDEVELOPMENT SUCCESSOR AGENCY 1412, 1438, 1500 and 1514 Capitola Road Santa Cruz, California FIGURE:

1
PROJECT:
IA771

SOIL VAPOR SAMPLING LOCATIONS

PROPERTY OF SANTA CRUZ COUNTY REDEVELOPMENT SUCCESSOR AGENCY

1412, 1438, 1500 and 1514 Capitola Road Santa Cruz, California FIGURE:

2

PROJECT:

PROBE AND SHROUD DIAGRAMS, FIELD NOTES, LABORATORY ANALYTICAL REPORT

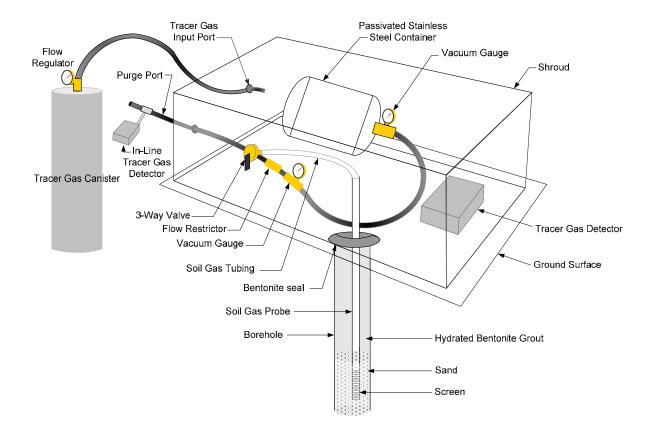
Typical Single and Nested Soil Gas Probe Design & Purge Volume Calculation Surface -Gas Tight Fitting -Probe Box (optional) Bentonite Grout (if permanent) Hydrated Bentonite (if semi-permanent) —Tubing -(metal, nylon, PEEK, teflon®) DBT DBT ~1 Ft Dry Granular Bentonite X Probe Tip -ST ST ~1 Ft Sand TL Bentonite Grout Legend (if permanent) BD = borehole diameter (inches) or BLV = borehole linear volume (ml/ft) Hydrated Bentonite DBT = dry bentonite thickness (ft) (if semi-permanent) DBV = dry bentonite volume (ml) ID = tubing inner diameter (inch) ~1 Ft Dry Granular Bentonite PV = purge volume (ml) ST = sand pack thickness (ft) Probe Tip < SV = sand pack volume (ml) TL = tubing length (ft) ~1 Ft Sand -TLV = tubing linear volume (ml/ft) -X-TV = tubing volume (ml) ST PEEK = Polyetheretherketone **◆**BD **>** X = 3/16" = (1) $TV = TL \times TLV = (TL)$ X 16 if tubing ID = 5/16" = X ___ if tubing ID = _____ = X 350 if BD = 2 1/8" = (2) $DBV = DBT \times BLV = (DBT)$ X 820 if BD = 3 1/4" = X ____ if BD = ____ X 280 if BD = 2 1/8" = (3) $SV = ST \times BLV = (ST)$ X 660 if BD = 3 1/4" = ml X _____ if BD = _____ " =

1 PV = (1)TV + (2) DBV + (3) SV = ml

Figure 1

April 2012 11

Note: porosity of 50% used for dry bentonite and


40% used for #3 sand pack to calculate BLV.

ADVISORY - ACTIVE SOIL GAS INVESTIGATIONS

sample. Regardless of the cause of the leak, a data "adjustment factor" based upon the concentration of the leak check compound to compensate for the inability to collect representative samples is inappropriate.

FIGURE C-1

Shroud Components

April 2012 C-3

TEL: 831.475.8141 FAX: 831.475.8249

Client: Capitale Rd Parcelo	Project #: 1A771
Job Address: 1514 Capitala Rd, Line Oak	Date: 12/13/19
Weather Conditions: Cloudy, overcast	Field Tech: ~ T
Equipment on site: SG Sampling	Page: (of)
Arrival Time: 1310	
Departure Time: 1500	
FIELD NOTES:	
Anrived on Site, Rich wonling on	SV-3-5
- Purge calco: VP-2-51 & VP-	ing water
- turge Calct: VP-2-51 & VP-	
V tubing = T(0.085")2(60")	= 1.3bin ³
V hole = Tr (0.3125")2 (18") (0.3)	= 1.65 in 3
Value = TT (0.3125")2 (12")(0.3)	= 1-10 is
	4.11 in 3 ~ 67mL
67ml Imm = 27sec purge	10 To
150mL	
- Removed Wainy from ground, So	C. Chocked vin
- Cleaned + Packed	
Departed	
- Squarec	
Signature	e: Myang

Soil Gas Work Order

Requested by: Cate Townsend

Project #: |A771

	1514 Capitola Road Date of Request:
	APN 026-741-15 Ideal Completion Date: ASAP
	Please check or fill appropriate boxes, and indicate you have included the requested attachments.
X Samp	ole SG Wells or Vapor Points
3	Total # of samples to be collected
.	Requested Attachments
Yes*	A site map with sample locations (preferrably with [] contours, to determine order)
Yes	COC sample analysis & methodology
	List here: TO-15 * No data previously collected from this site. Included a contour map of adjacent site to show gw flow and direction. Other COC/special instructions: Rich is going to install the soil sampling probes. These are temporary sampling points. Not to be left in ground longer than 24 hours.
Samp	le Indoor/Outdoor Air 24 hour 8 hour
	Total # of INDOOR air samples
	Total # of OUTDOOR air samples
	Requested Attachments
	A site map with sample locations, and alternative locations if wind direction changes
	COC analysis & methodology
	List here:
	Other COC/special instructions:
Vapo	or Pin Installation
	Total number of Vapor Pins to be installed
	Requested Attachments
	A site map with proposed installation locations

RRM		Soil G	as Samplir	ng Field Da	ta Sheet	
Projec	ct Name	Project	Location	Project Number	Personnel	Date
Capitola	Rd Parcels	1514 Capitola	, Santa Cruz, CA	IA771	MT	12/13/19
Sampl	le Name	Sample Canister ID	Sample Can Volume	Manifold/Train ID	Manifold Flow Rate (mL/min)	Purge Canister ID
VP-	1-5	2644	1.4L	21	150	27743
observed betw installation or sub-s	m 48-hour wait period reen sample point urface disturbance and ng event?	Cross-Slab Differe	ntial Pressure ("H ₂ O)		Differential Pressure ("H ₂ O)	
YES	/ (0)	N	I/A		N/A	
		Justine	Shut-In Test	(3min minimum)		
Time (24:00) ~ 1min intervals	Flow Rate (mL/min)			Pressure @ Purge Canister ("Hg)	Pressure @ Well Head ("Hg)	No observable loss of vacuum for at least 1 min?
1403	150			22.5	24.0	700 CD 4 CD
1404	150			22.5	24.0	YES (PASS) NO (FAIL)
1405	150			22.5	24.0	No (ITIL)
			Leak T	est (Purge)		
Time (24:00) ~ 2min intervals	Flow Rate (mL/min)	Pressure @ Purge Canister ("Hg)	Pressure @ Well Head ("Hg)		275	Notes
1406	150	21.5	0		28.2sec purge @ 150mL/min	
1406	150	24.0	0		70.5n	nL purge total
	150					
	150					
	150					
	150					
	150					
	150					
	150					
	150					
		Sample Collect	ion		Notes:	
Time (24:00) ~2 min intervals	Flow Rate (mL/min)	He in Shroud (%)	Pressure @ Sample Canister ("Hg)	Pressure @ Well Head ("Hg) *keep <7.5"Hg	*final sample pressure ideally ~ 4"Hg *request lab include final can vac upon lab receival *request lab report in ug/m^3	
1410	150	23.3	24.5	0	*include can#, mani#, st *shroud [] ideally 20-40	
1412	150	29.8	18.5	0	shroud [] ideally 25-30	
1414	150	33.8	13.5	0	2ND SHUT IN:	0 0
1415	150	23.6	9.5	. 0	I we to con	n Peruel

Sample Collection					
Time (24:00) ~2 min intervals	Flow Rate (mL/min)	He in Shroud (%)	Pressure @ Sample Canister ("Hg)	Pressure @ Well Head ("Hg) *keep <7.5"Hg	
1410	150	23.3	24.5	0	
1412	150	29.8	18.5	٥	
1414	150	33.8	13.5	6	
1415	150	23.6	9.5	. 0	
1416	150	24.0	6.5	0	
	150				
	150				
	150				
	150				
	150				
	150				
Sample Name	Sample End Time (24:00)	Sample Start Pressure ("Hg)	Sample Final Pressure ("Hg)		
Sv-1-5	(417	25.0	5.0		

Time F	Cem	Peruell
1407	26.0	
1408		28-0
1409	28.04	126.0
	-	

Soil Gas Sampling Field Data Sheet

Project Name	Project Location		Project Number	Personnel	Date
Capitola Rd Parcels	1514 Capitola, Santa Cruz, CA		IA771	MT	12/13/19
Sample Name	Sample Canister ID	Sample Can Volume	Manifold/Train ID	Manifold Flow Rate (mL/min)	Purge Canister ID
VP-2-5	2855	1.4L	22,	150	27743
Was there a minimum 48-hour wait period observed between sample point installation or sub-surface disturbance and sampling event?	Cross-Slab Differential Pressure ("H ₂ 0)		ľ	Differential Pressure 'H ₂ O)	
YES /(NO)	N/A		1	N/A	

	Shut-In Test (3min minimum)				
Time (24:00) ~ 1min intervals	Flow Rate (mL/min)	Pressure @ Pi Canister ("H	Pressure (a) Well Head ("Hot	No observable loss of vacuum for at least 1 min?	
1332	150	26	25	700 (DA CO)	
1333	150	26	25	NO (FAIL)	
1334	150	26	2.5	1.0 (17111)	

	Leak Test (Purge)					
Time (24:00) ~ 2min intervals	Flow Rate (mL/min)	Pressure @ Purge Canister ("Hg)	Pressure @ Well Head ("Hg)		Notes 275	
1335	150	25.5	0		- 28.2se c purge @ 150mL/min	
1336	150	25.5	Ö		70.5mL purge total	
	150					
	150					
	150					
	150					
	150					
	150					
	150					
	150					

Sample Collection					
Time (24:00) ~2 min intervals	Flow Rate (mL/min)	He in Shroud (%)	Pressure @ Sample Canister ("Hg)	Pressure @ Well Head ("Hg) *keep <7.5"Hg	
1345	150	285	28.0	0	
1347	150	33.2	18.0	ь	
1348	150	33.8	14.5	0	
1349	150	22.5	11.0	Ø	
1350	150	23.4	9.0	to	
1351	150	28.9	5.5	6	
	150				
	150				
	150				
	150				
	150				
Sample Name	Sample End Time (24:00)	Sample Start Pressure ("Hg)	Sample Final Pressure ("Hg)		
SV-2-5	1351	28.0	4.5		

- Notes:

 *final sample pressure ideally ~ 4"Hg

 *request lab include final can vac upon lab receival

 *request lab report in ug/m^3

 *include can#, mani#, start/end pressures

 *shroud [] ideally 20-40ppm with IPA

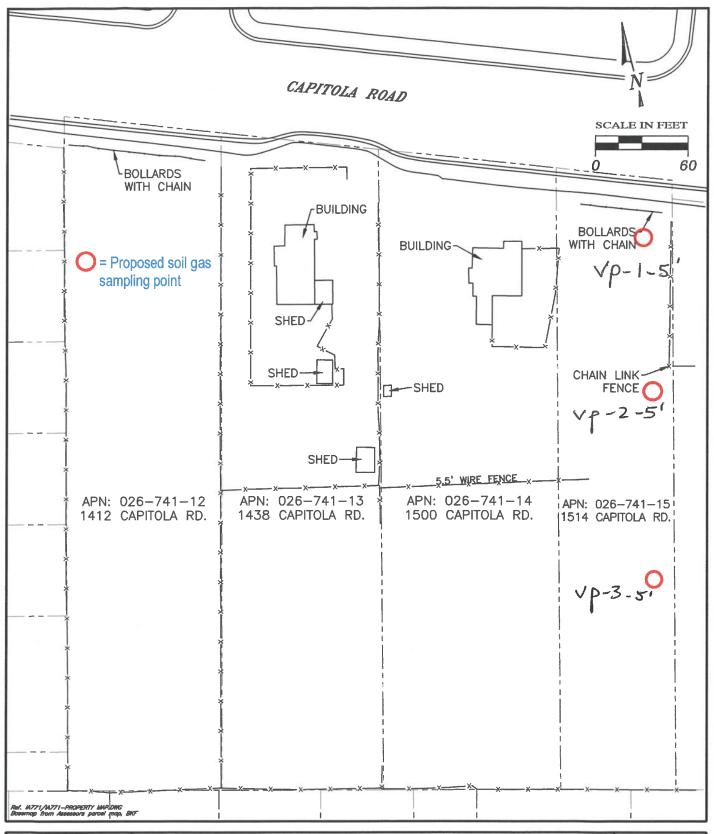
 *shroud [] ideally 25-30% He

2ND SHUT IN:

Time	Pa can	Powell
1342	280	27.5
1343	4	11
1344	11	//
ş 		

TEL: 831.475.8141 FAX: 831.475.8249

Client:	Project #: TA771
Job Address:	Date: 12 13 19
Weather Conditions:	Field Tech: Ruch
Equipment on site:	Page: of 2
Arrival Time:	
Departure Time:	e e e e e e e e e e e e e e e e e e e
FIELD NOTES:	
Install Soil	Gas
Vapor Points	
14	
Find the 3 locations	
· Start w/ 84 VP-2-5'	10 mm
drive vapor point screen teston	tubing to 5'
0-4' lasy last 1' foot slow	- much harder
· hole Stayed open to 5'	101.00
· build up - 1'B" sand / 1' dry granula	hestority 12.5'
hydrated bentonite to surface.	- CONTONICO / DIVI
	VP-2-5'
Shit in good well vec 0, can 25-24	
e done 0930	
	i.
VP-1-5' - drive to 5' easy th	e whoh way down
- hale stayed open to 5'	7
- build up with 1'6" sand	I dry gran bentanto
2.5 hydrated bentonite to	Surface
1 test - train # 21 for Vp-1-5'	(a)
Shut-in good will vac 4"Hs can	vac 24-23" Ag
(will game direct slowly to 4"Hs in	thile tapping on gauce -
Stopped @ 4"Hs)	
o d'one 10°25 Signatur	e: Red


TEL: 831.475.8141 FAX: 831.475.8249

Client:	Project #: IA771
Job Address:	Date: 12/13/19
Weather Conditions:	Field Tech: Ruh
Equipment on site:	Page: A of 2
Arrival Time:	
Departure Time:	·
FIELD NOTES:	
Install Soil G	95
Vapor Points	
14	
VP-3-5'	
	1
A implant "drive end" broke on	last Vacca is to
cannot insert screen vapor	Chieta de al
needs the "drive end". P	the dive room
for pipe to make "drive y	
site.	wa Return to
use	rotu hammer to
	A
Medium wall electrical condinit	
	- worked to
3'8" below grand Surface - Then Sheered oft @ "Extention Dr.	drive rod broke
- Rumius Dias - Soil in Dias - o	vai list day 1/420
Remove pipe - Soil in pipe - p Messense DTwater - I'll" below g	The cost of the said
unable to install viewer anits	- equipment failure
and wet conditions	Cy Di pinace d'ai june
www conquirions	
- pack up /trul back to shope	
- oln up wash mud off eminute.	
- pack up / trul back to Shape - aln up wash mud off eye prent. Write up prork Signatu	ire: Gich
N I	

Tel: 831.475.8141 Fax: 831.475.8249

Client:		Project #: IA 77/
Job Address:		Date: /2/13/19
Weather Conditions:		Field Tech: Ruch
Equipment on site:		Page: 3 of 3
Arrival Time:		
Departure Time:		
FIELD NOTES:	e e	•
Vp-1-51	and Vp-2-5	- Build Specs
Teflor Tubins	14	
O.17"IDX 400		ground surface
1		grayer survive
2.5 4 1. +1	• Va	T 1 1 (11)
2.5 Hydrated Bentonte	1	in to 5' w/ Rotottam.
	164.	n to S w Rotottam.
	Atla	drive rod removal
4	hole	remarked open. Built
1' Dry Benty to		ul as shown.
(Granulor)		2+ hrs wait time,
1	VOpor	points sampled. After
	Samo	ing implants /tubing pulled
1.5' Sand 2/12	1 Filled	w/ hydratel bentonite.
	Z" 7" Screened	l vapor implant (point)
	1/0	The fact of fourt
·	1"1	
	5/8" (drive rod)	P
•	G:	nature: Rick

PROPERTY MAP

PROPERTY OF SANTA CRUZ COUNTY REDEVELOPMENT SUCCESSOR AGENCY

1412, 1438, 1500 and 1514 Capitola Road Santa Cruz, California FIGURE:

2 PROJECT:

IA771

Date of Report: 01/30/2020

Cate Townsend

RRM, Inc.

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062

Client Project: [none] IA771 **BCL** Project: BCL Work Order: 1942419 Invoice ID: B367908

Enclosed are the results of analyses for samples received by the laboratory on 12/16/2019. If you have any questions concerning this report, please feel free to contact me.

Revised Report: This report supercedes Report ID 1000984588

Sincerely,

Contact Person: Christina Herndon

Client Service Rep

Stuart Buttram **Technical Director**

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Page 1 of 23 Report ID: 1000992735

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1942419-01 - VP-1-5	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	6
1942419-02 - VP-2-5	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	9
Quality Control Reports	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
Method Blank Analysis	12
Laboratory Control Sample	14
Subcontract Reports	
wo_1942419_sub_all.pdf	15
Notes	
Notes and Definitions	23

Chain of Custody and Cooler Receipt Form for 1942419 Page 1 of 2

* Required Fields						700
			TEMP.	h h2.h-h	Chain of Custody	ду
Client/Company Name*; RRM	Report Attention?; Cate Townsend	Phone * # (831 E-mail: labd	Phone **(831) 475-8141 FAX・#: E-mail: labdata; こなもの @rrm	FAX+#:	ANALYSIS REQUESTED	
Address City City 2560 Soquel Avenue #202 Santa	Santa Cruz CA 95	95062	Carbaa Capies:			
Project Information:	1814 Capitalould 1901 1977-1	-	Mercod Co Tuline Co	-		
How would you like your completed results sent? 🖊 E-Mail	fail Fax EDD Mail Only		Regulatory Compliance	[
Sampler Name Printed Signature	QC Request Result Request ** Surcharge	urcharge	System No. *	<u> </u>	√mir SI-	
Matrix Types: RSW = Raw Surface Water CFW = C	CFW = Clorinated Finished Water CWW = Chorinated Wieste Water FW = Finished Water WW = Waste Water SW = Storm Water E	Asste Water BW - m Water DW - D	r BW – Bottled Water DW – Dritking Water SO – Solid		JəH	
Sample # Sampled Sample Description	Sample Description / Location *	Matrix *	Staff	fral		
1年	\s\rac{1}{2}	4.0	100 # 1112 1111	# -		L
As	2-5		14	45		
				1		
	HK BY WEINTON					
	Sus our		* Present	hepart vac	word lab hacker	킿
Relinquished by: (Signature and Printed Name)	Company Date (12/3)	0 mg	Recoived by (Signature and Pring Manye)	d Pring Name)	Company (20)	020
Relinquished by: (Signature and Prihed Name)	Company Date		Receiped by (Signamer and Print Name)	d Print Name)	Company	
Received for Lab by: (Signature and Printed Name)	obed	Time	Payment Received at Delivery:	1 Delivery:		
			Date: Am	Amount: Check	Check/Cosh/Card PIA #	Ē
Shipping Method: CAO UPS GSO WALK-IN SJVC FED EX OTHER	SJVC FED EX OTHER	Cooling Method:	thod: WET BUUE	NONE	Packing Material:	

Report ID: 1000992735

Mul

Chain of Custody and Cooler Receipt Form for 1942419 Page 2 of 2

BC LABORATORIES INC. Submission #: 19-42419		(COOLER	RECEIPT	FORM			Page		f
* SHIPPING INFOR	MATION Hand	d Deliver	55_	Ice Che	HIPPING est⊡ er ⊡ (Spe	None 🗆	NER Box ∫X(- '	FREE LIQU	0 0
Refrigerant: Ice ☐ Blue Ice ☐ Custody Seals Ice Chest ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Contain	ers 🗆	Other None	Comn Com						
1	Intact? Yes All samples		Interes V	an of 100	n	Donada		. coca v	estd Not	$\overline{}$
·	issivity:								e12-16-16	
-0	emperature:							Analyst I		العام الم
SAMPLE CONTAINERS					SAMPLE	NUMBERS				
	1	2	3	4	5	6	7		9	10
OT PE UNPRES			1			-				
40z / 80z / 160z PE UNPRES	-	 	1							
20z Cr**	+	-	-							
OT INORGANIC CHEMICAL METALS			-							
INORGANIC CHEMICAL METALS 40z / 80z / 160z		 	-						-	
PT CYANIDE	+	 				-	-			
PT NITROGEN FORMS	-		-					-		
PT TOTAL SULFIDE	—	 					-			
PET TOTAL ORGANIC CAPRON	-	-	-							
PT TOTAL ORGANIC CARBON		-	-							
PT CHEMICAL OXYGEN DEMAND PLA PHENOLICS										
40ml VOA VIAL TRAVEL BLANK	1	1								
40ml VOA VIAL	1	1								
OT EPA 1664	1									
PT ODOR	1	1								
RADIOLOGICAL ·	1									
BACTERIOLOGICAL	1									
00 ml VOA VIAL-504	1									
QT EPA 508/608/8080										
QT EPA 515.1/8150								4		
QT EPA 525										
OT EPA 525 TRAVEL BLANK										
00ml EPA 547										
Oml EPA 531.1										
oz EPA 548										
OT EPA 549										
OT EPA 8015M										
OT EPA 8270										
0z/16cz/32cz AMBER										
0x / 160x / 320x JAR										
OIL SLEEVE	ļ									
CB VIAL						-				
LASTIC BAG										
EDLAR BAG										
ERROUS IRON										
NCORE										
MART KIT										
UMMA CANISTER .	μ	A								
mments:			-							
mple Numbering Completed By:		M7	-	_Date/Tim		Hierr	a 113	4	Rev-2105	

Report ID: 1000992735 4100 Atlas C

2560 Soquel Avenue, Suite 202

Santa Cruz, CA 95062

RRM, Inc.

Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1942419-01	COC Number:		Receive Date:	12/16/2019 08:30
	Project Number:	IA771	Sampling Date:	12/13/2019 14:17
	Sampling Location:		Sample Depth:	
	Sampling Point:	VP-1-5	Lab Matrix:	Air
	Sampled By:	Megan T. of RRMS	Sample Type:	Vapor or Air
1942419-02	COC Number:		Receive Date:	12/16/2019 08:30
	Project Number:	IA771	Sampling Date:	12/13/2019 13:51
	Sampling Location:		Sample Depth:	
	Sampling Point:	VP-2-5	Lab Matrix:	Air
	Sampled By:	Megan T. of RRMS	Sample Type:	Vapor or Air

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 5 of 23

RRM, Inc.

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 19	42419-01	Client Samp	e Name:	IA771, VF	P-1-5, 12/1	3/2019 2:17:00F	PM, Megan T.		
Constituent		Postule	Heito	PQL	MDL	Mothed	MB	Lab	P #
Constituent Acetone		Result ND	Units ug/m3	920	72	Method EPA-TO-15	Bias ND	Quals A01	Run #1
Acrylonitrile		ND	ug/m3	370	40	EPA-TO-15	ND	A01	 1
Allyl chloride		ND	ug/m3	370	48	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	370	29	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	1800	120	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	920	74	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	1800	130	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	370	100	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	370	46	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	370	29	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	920	70	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	920	61	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	370	59	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	920	46	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	370	53	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	370	33	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	920	79	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	920	75	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	920	72	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	920	110	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	920	100	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	920	70	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	920	52	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	920	39	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	920	37	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	370	42	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	370	37	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	920	55	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	920	42	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	920	55	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	920	140	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	920	370	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	370	99	EPA-TO-15	ND	A01	1

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 6 of 23

RRM, Inc.

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 19	42419-01	Client Sampl	e Name:	IA771, VP	P-1-5, 12/13	3/2019 2:17:00F	M, Megan T.		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	370	140	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	370	74	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	920	66	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	920	100	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	370	55	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	1800	460	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	920	37	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	920	63	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	370	86	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	1800	44	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		120	ug/m3	370	77	EPA-TO-15	ND	J,A01	1
Methyl isobutyl ketone		ND	ug/m3	920	130	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	370	66	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	370	17	EPA-TO-15	ND	A01	1
Styrene		180	ug/m3	920	70	EPA-TO-15	ND	J,A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	920	200	EPA-TO-15	ND	A01	1
Tetrachloroethene		8200	ug/m3	370	63	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	370	77	EPA-TO-15	ND	A01	1
Toluene		240	ug/m3	370	35	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	1800	110	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	920	52	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	920	52	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	370	70	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	920	55	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoroe	thane	ND	ug/m3	920	72	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	920	120	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	920	280	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	370	57	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	370	53	EPA-TO-15	ND	A01	1
p- & m-Xylenes		210	ug/m3	920	150	EPA-TO-15	ND	J,A01	1
o-Xylene		ND	ug/m3	920	98	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	1800	260	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surro	ogate)	101	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 23

2560 Soquel Avenue, Suite 202

Santa Cruz, CA 95062

Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D: 1942419-01	Client San	nple Name:	IA771, VP-1-5, 12/13/2019 2:17:00PM, Megan T.				
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	12/30/19 10:41	12/31/19 03:59	BEP	MS-A2	184	B065765	

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 23

RRM, Inc.

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 194	42419-02	Client Sampl	e Name:	IA771, VF					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Acetone		ND	ug/m3	790	62	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	320	35	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	320	41	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	320	25	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	1600	100	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	790	63	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	1600	110	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	320	87	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	320	40	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	320	25	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	790	60	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	790	52	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	320	51	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	790	40	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	320	46	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	320	28	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	790	68	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	790	65	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	790	62	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	790	96	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	790	87	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	790	60	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	790	44	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	790	33	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	790	32	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	320	36	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	320	32	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	790	47	EPA-TO-15	ND	A01	1
sis-1,3-Dichloropropene		ND	ug/m3	790	36	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	790	47	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	790	120	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	790	320	EPA-TO-15	ND	A01	1
,4-Dioxane		ND	ug/m3	320	85	EPA-TO-15	ND	A01	1

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 23

RRM, Inc.

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 19	942419-02	Client Sampl	e Name:	IA771, VF	P-2-5, 12/1:	3/2019 1:51:00F	PM, Megan T.		
O		Da 14	11	PQL	MDL	Madle - d	MB	Lab	- · · · · · · · · · · · · · · · · · · ·
Constituent Ethanol		Result ND	Units ug/m3	320	120	Method EPA-TO-15	Bias ND	Quals A01	Run # 1
Ethyl acetate		ND	ug/m3	320	63	EPA-TO-15	ND	A01	<u>'</u> 1
Ethylbenzene		ND	ug/m3	790	57	EPA-TO-15	ND	A01	<u>'</u> 1
1-Ethyl-4-methylbenzene		ND	ug/m3	790	87	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	320	47	EPA-TO-15	ND	A01	<u>'</u> 1
Hexachlorobutadiene		ND	ug/m3	1600	400	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	790	32	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	790	54	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	320	74	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	1600	38	EPA-TO-15	ND	A01	<u>'</u> 1
Methyl ethyl ketone		120	ug/m3	320	66	EPA-TO-15	ND	J,A01	1
Methyl isobutyl ketone		ND	ug/m3	790	110	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	320	57	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	320	14	EPA-TO-15	ND	A01	1
Styrene		190	ug/m3	790	60	EPA-TO-15	ND	J,A01	<u>·</u> 1
1,1,2,2-Tetrachloroethane		ND	ug/m3	790	170	EPA-TO-15	ND	A01	1
Tetrachloroethene		40000	ug/m3	320	54	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	320	66	EPA-TO-15	ND	A01	1
Toluene		210	ug/m3	320	30	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	1600	92	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	790	44	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	790	44	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	320	60	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	790	47	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	790	62	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	790	100	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	790	240	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	320	49	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	320	46	EPA-TO-15	ND	A01	1
p- & m-Xylenes		170	ug/m3	790	130	EPA-TO-15	ND	J,A01	1
o-Xylene		ND	ug/m3	790	84	EPA-TO-15	ND	A01	1
Total Xylenes		240	ug/m3	1600	220	EPA-TO-15	ND	J,A01	1
4-Bromofluorobenzene (Surr	ogate)	102	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			1

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 23

2560 Soquel Avenue, Suite 202

Santa Cruz, CA 95062

Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D: 1942419-02	Client San	nple Name:	IA771, VP-2-5, 12/13/2019 1:51:00PM, Megan T.				
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	12/30/19 10:41	12/31/19 04:51	BEP	MS-A2	158	B065765	

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 11 of 23

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B065765						
Acetone	B065765-BLK1	ND	ug/m3	5.0	0.39	
Acrylonitrile	B065765-BLK1	ND	ug/m3	2.0	0.22	
Allyl chloride	B065765-BLK1	ND	ug/m3	2.0	0.26	
Benzene	B065765-BLK1	ND	ug/m3	2.0	0.16	
Benzyl chloride	B065765-BLK1	ND	ug/m3	10	0.63	
Bromodichloromethane	B065765-BLK1	ND	ug/m3	5.0	0.40	
Bromoform	B065765-BLK1	ND	ug/m3	10	0.71	
Bromomethane	B065765-BLK1	ND	ug/m3	2.0	0.55	
1,3-Butadiene	B065765-BLK1	ND	ug/m3	2.0	0.25	
Carbon disulfide	B065765-BLK1	ND	ug/m3	2.0	0.16	
Carbon tetrachloride	B065765-BLK1	ND	ug/m3	5.0	0.38	
Chlorobenzene	B065765-BLK1	ND	ug/m3	5.0	0.33	
Chloroethane	B065765-BLK1	ND	ug/m3	2.0	0.32	
Chloroform	B065765-BLK1	ND	ug/m3	5.0	0.25	
Chloromethane	B065765-BLK1	ND	ug/m3	2.0	0.29	
Cyclohexane	B065765-BLK1	ND	ug/m3	2.0	0.18	
Dibromochloromethane	B065765-BLK1	ND	ug/m3	5.0	0.43	
1,2-Dibromoethane	B065765-BLK1	ND	ug/m3	5.0	0.41	
1,2-Dichlorobenzene	B065765-BLK1	ND	ug/m3	5.0	0.39	
1,3-Dichlorobenzene	B065765-BLK1	ND	ug/m3	5.0	0.61	
1,4-Dichlorobenzene	B065765-BLK1	ND	ug/m3	5.0	0.55	
Dichlorodifluoromethane	B065765-BLK1	ND	ug/m3	5.0	0.38	
1,1-Dichloroethane	B065765-BLK1	ND	ug/m3	5.0	0.28	
1,2-Dichloroethane	B065765-BLK1	ND	ug/m3	5.0	0.21	
1,1-Dichloroethene	B065765-BLK1	ND	ug/m3	5.0	0.20	
cis-1,2-Dichloroethene	B065765-BLK1	ND	ug/m3	2.0	0.23	
trans-1,2-Dichloroethene	B065765-BLK1	ND	ug/m3	2.0	0.20	
1,2-Dichloropropane	B065765-BLK1	ND	ug/m3	5.0	0.30	
cis-1,3-Dichloropropene	B065765-BLK1	ND	ug/m3	5.0	0.23	
trans-1,3-Dichloropropene	B065765-BLK1	ND	ug/m3	5.0	0.30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	B065765-BLK1	ND	ug/m3	5.0	0.77	
1,1-Difluoroethane	B065765-BLK1	ND	ug/m3	5.0	2.0	
1,4-Dioxane	B065765-BLK1	ND	ug/m3	2.0	0.54	
Ethanol	B065765-BLK1	ND	ug/m3	2.0	0.74	

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 23

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B065765						
Ethyl acetate	B065765-BLK1	ND	ug/m3	2.0	0.40	
Ethylbenzene	B065765-BLK1	ND	ug/m3	5.0	0.36	
1-Ethyl-4-methylbenzene	B065765-BLK1	ND	ug/m3	5.0	0.55	
n-Heptane	B065765-BLK1	ND	ug/m3	2.0	0.30	
Hexachlorobutadiene	B065765-BLK1	ND	ug/m3	10	2.5	
Hexane	B065765-BLK1	ND	ug/m3	5.0	0.20	
2-Hexanone	B065765-BLK1	ND	ug/m3	5.0	0.34	
Isopropyl alcohol	B065765-BLK1	ND	ug/m3	2.0	0.47	
Methylene chloride	B065765-BLK1	ND	ug/m3	10	0.24	
Methyl ethyl ketone	B065765-BLK1	ND	ug/m3	2.0	0.42	
Methyl isobutyl ketone	B065765-BLK1	ND	ug/m3	5.0	0.70	
Methyl t-butyl ether	B065765-BLK1	ND	ug/m3	2.0	0.36	
Propylene	B065765-BLK1	ND	ug/m3	2.0	0.090	
Styrene	B065765-BLK1	ND	ug/m3	5.0	0.38	
1,1,2,2-Tetrachloroethane	B065765-BLK1	ND	ug/m3	5.0	1.1	
Tetrachloroethene	B065765-BLK1	ND	ug/m3	2.0	0.34	
Tetrahydrofuran	B065765-BLK1	ND	ug/m3	2.0	0.42	
Toluene	B065765-BLK1	ND	ug/m3	2.0	0.19	
1,2,4-Trichlorobenzene	B065765-BLK1	ND	ug/m3	10	0.58	
1,1,1-Trichloroethane	B065765-BLK1	ND	ug/m3	5.0	0.28	
1,1,2-Trichloroethane	B065765-BLK1	ND	ug/m3	5.0	0.28	
Trichloroethene	B065765-BLK1	ND	ug/m3	2.0	0.38	
Trichlorofluoromethane	B065765-BLK1	ND	ug/m3	5.0	0.30	
1,1,2-Trichloro-1,2,2-trifluoroethane	B065765-BLK1	ND	ug/m3	5.0	0.39	
1,2,4-Trimethylbenzene	B065765-BLK1	ND	ug/m3	5.0	0.64	
1,3,5-Trimethylbenzene	B065765-BLK1	ND	ug/m3	5.0	1.5	
Vinyl acetate	B065765-BLK1	ND	ug/m3	2.0	0.31	
Vinyl chloride	B065765-BLK1	ND	ug/m3	2.0	0.29	
p- & m-Xylenes	B065765-BLK1	ND	ug/m3	5.0	0.83	
o-Xylene	B065765-BLK1	ND	ug/m3	5.0	0.53	
Total Xylenes	B065765-BLK1	ND	ug/m3	10	1.4	
4-Bromofluorobenzene (Surrogate)	B065765-BLK1	95.8	%	70 - 13	0 (LCL - UCL)	

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 13 of 23

2560 Soquel Avenue, Suite 202 Santa Cruz, CA 95062 Reported: 01/30/2020 15:29

Project: IA771
Project Number: [none]

Project Manager: Cate Townsend

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control I	<u>imits</u>	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: B065765										
Benzene	B065765-BS1	LCS	16.804	15.974	ug/m3	105		70 - 130		
	B065765-BSD1	LCSD	17.028	15.974	ug/m3	107	1.3	70 - 130	30	
Chloroform	B065765-BS1	LCS	26.610	24.413	ug/m3	109		70 - 130		
	B065765-BSD1	LCSD	26.952	24.413	ug/m3	110	1.3	70 - 130	30	
Ethylbenzene	B065765-BS1	LCS	24.272	21.711	ug/m3	112		70 - 130		
	B065765-BSD1	LCSD	24.316	21.711	ug/m3	112	0.2	70 - 130	30	
Tetrachloroethene	B065765-BS1	LCS	39.881	33.913	ug/m3	118		70 - 130		
	B065765-BSD1	LCSD	39.881	33.913	ug/m3	118	0	70 - 130	30	
Toluene	B065765-BS1	LCS	20.726	18.842	ug/m3	110		70 - 130		
	B065765-BSD1	LCSD	20.764	18.842	ug/m3	110	0.2	70 - 130	30	
Trichloroethene	B065765-BS1	LCS	30.899	26.869	ug/m3	115		70 - 130		
	B065765-BSD1	LCSD	31.168	26.869	ug/m3	116	0.9	70 - 130	30	
Trichlorofluoromethane	B065765-BS1	LCS	31.350	28.092	ug/m3	112		70 - 130		
	B065765-BSD1	LCSD	32.081	28.092	ug/m3	114	2.3	70 - 130	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	B065765-BS1	LCS	41.997	38.318	ug/m3	110		70 - 130		
	B065765-BSD1	LCSD	42.457	38.318	ug/m3	111	1.1	70 - 130	30	
p- & m-Xylenes	B065765-BS1	LCS	49.934	43.421	ug/m3	115		70 - 130		
	B065765-BSD1	LCSD	49.891	43.421	ug/m3	115	0.1	70 - 130	30	
o-Xylene	B065765-BS1	LCS	24.837	21.711	ug/m3	114		70 - 130		
	B065765-BSD1	LCSD	25.097	21.711	ug/m3	116	1.0	70 - 130	30	
Total Xylenes	B065765-BS1	LCS	74.771	65.132	ug/m3	115		70 - 130		
	B065765-BSD1	LCSD	74.989	65.132	ug/m3	115	0.3	70 - 130	30	
4-Bromofluorobenzene (Surrogate)	B065765-BS1	LCS	72.0	71.6	ug/m3	101		70 - 130		
	B065765-BSD1	LCSD	72.9	71.6	ug/m3	102	1.3	70 - 130		

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 14 of 23

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 1 of 8

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

LABORATORY REPORT

January 8, 2020

Molly Meyers BC Laboratories, Inc. 4100 Atlas Court Bakersfield, CA 93308

RE: 1942419

Dear Molly:

Enclosed are the results of the samples submitted to our laboratory on December 5, 2019. For your reference, these analyses have been assigned our service request number P2000011.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Sue Anderson Project Manager

1 of 8

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 2 of 8

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

Client: BC Laboratories, Inc.

Project: 1942419

Service Request No: P2000011

CASE NARRATIVE

The samples were received intact under chain of custody on December 5, 2019 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Helium Analysis

The samples were analyzed for helium according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

RIGHT SOLUTIONS | RIGHT PARTNER

2 of 8

Report ID. 1000992733

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 3 of 8

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2018027
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1521096
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaborat	4068-006
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 19-10
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA01627201 9-10
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

RIGHT SOLUTIONS | RIGHT PARTNER

3 of 8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 17 of 23

P2000011-002

1942419-02

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 4 of 8

12/13/2019

13:51

ALS ENVIRONMENTAL DETAIL SUMMARY REPORT Client: BC Laboratories, Inc. Service Request: P2000011 Project ID: 1942419 3C Modified - Helium Can Date Received: 1/2/2020 Time Received: 12:10 Date Time Client Sample ID Lab Code Matrix Collected Collected 1942419-01 P2000011-001 12/13/2019 14:17 Х Air

Х

P2000011_Detail Summary_2001081155_LP.ab - DETAIL SUMMARY

4 of 8

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 5 of 8

SUBCONTRACT ORDER BC Laboratories 1942419

P2000011

CLMBS

SENDING LABORATORY:

BC Laboratories 4100 Atlas Court Bakersfield, CA 93308 Phone: 661-327-4911 FAX: 661-327-1918

Project Manager: Christina Herndon

RECEIVING LABORATORY:

ALS Environmental Simi Valley- Air Testing 2655 Park Center Drive, Suite A

Simi Valley, CA 93065 Michael Tuday Phone: (805) 526-7161 FAX: (805) 526-7270

name (and a second

Comments Expires * * Due Analysis Sampled: 12/13/19 14:17 Sample ID: 1942419-01 Air 12/27/19 14:17 12/23/19 17:00 EPA 3C (Modified) - Helium Containers supplied: Sampled: 12/13/19 13:51 Air Sample ID: 1942419-02 12/27/19 13:51 12/23/19 17:00 EPA 3C (Modified) - Helium 664 64 36 Containers supplied:

Report ID: 1000992735 4100 Atlas Court Bakerstield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bciabs.com

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 6 of 8

Client:	BC Laborato	ries, Inc.	_	ALS Environ le Acceptance		Work order:	P2000011		
Project:	192419	,			•				
Sample	s) received or	r 1/2/20			Date opened:	1/2/20	by:	DENISE.POS	ADA
ote: This	form is used for ;	all samples received by ALS	. The use of this f	orm for custody se	eals is strictly me	ant to indicate pres	ence/absence and no	ot as an indication	of
		y. Thermal preservation and		-					
								Yes No	N/A
1		e containers properly		ient sample ID	?			\boxtimes	
2	Did sample	containers arrive in go	od condition?					\boxtimes	
3	Were chain-	of-custody papers use	d and filled out	?				\boxtimes	
4	Did sample	container labels and/o	r tags agree wi	th custody pap	ers?			\boxtimes	
5	Was sample	volume received adeq	uate for analys	is?				\boxtimes	
6	Are samples	within specified holding	ng times?					\boxtimes	
7	Was proper t	emperature (thermal	preservation) o	f cooler at rec	eipt adhered t	0?			\times
8	Were custod	y seals on outside of c							\boxtimes
		Location of seal(s)?					_Sealing Lid?		\boxtimes
		re and date included?							\boxtimes
	Were seals in								×
9		ers have appropriate p		-		Client specified	information?		×
		ent indication that the			eserved?				×
		vials checked for pres							×
		nt/method/SOP requir	e that the analy	st check the sa	mple pH and	if necessary alto	er it?		X
10	Tubes:	Are the tubes cap	ped and intact	?					×
11	Badges:	Are the badges p	roperly capped	and intact?					×
		Are dual bed bad	ges separated a	and individuall	y capped and	intact?			X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Receip	ot / Preservation	n
		Description	pH *	pН	pH	(Presence/Absence	0)	Comments	
200001	1-001.01	Client Canister					İ		
200001	1-002.01	Client Canister							
							+		
							+		
		oise: (includa lab camala	ID numbers):						
Explai	n any discrepan	cres. (include lab sample		_					
Explai	n any discrepan	cies. (incidde iao sampie							
Explai	n any discrepan	cres. (menure lab sample							
		RSK - ⇔2. (pH 5-8); Sulfur (-ID-d)						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1000992735
4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 20 of 23 Report ID: 1000992735

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 7 of 8

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: BC Laboratories, Inc.

Client Project ID: 1942419 ALS Project ID: P2000011

Helium

Test Code: EPA 3C Modified Instrument ID: HP5890 II/GC8/TCD

Analyst: Li Donghao Sample Type: Canister(s)

Test Notes:

Date(s) Collected: 12/13/19 Date Received: 1/2/20 Date Analyzed: 1/3/20

Client Sample ID	ALS Sample ID	Injection Volume ml(s)	Container Dilution Factor	Result ppmV	MRL ppmV	Data Qualifier
1942419-01	P2000011-001	1.00	1.00	ND	25	
1942419-02	P2000011-002	1.00	1.00	620	25	
Method Blank	P200103-MB	1.00	1.00	ND	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P2000011_3CHEH2_2001071058_8C xls - Compound

3C_HE_H2 xls - Page No.

7 of 8

Subcontract Report for 1942419 PDF File Name: wo_1942419_sub_all.pdf Page 8 of 8

ALS ENVIRONMENTAL

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: BC Laboratories, Inc.

Client Sample ID: Lab Control Sample ALS Project ID: P2000011 Client Project ID: 1942419 ALS Sample ID: P200103-LCS

Test Code: EPA 3C Modified Date Collected: NA HP5890 II/GC8/TCD Instrument ID: Date Received: NA Analyst: Li Donghao Date Analyzed: 1/03/20

Sample Type: Volume(s) Analyzed: NA ml(s)

Test Notes:

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
7440-59-7	Helium	10,000	11,100	111	83-129	

P2000011_3CHEH2_2001071058_SCxls - LCS 3C_HE_H2 xls - Page No.: 8 of 8

RRM, Inc. Reported: 01/30/2020 15:29

2560 Soquel Avenue, Suite 202 Project: IA771 Santa Cruz, CA 95062 Project Number: [none]

Project Manager: Cate Townsend

Notes And Definitions

PQL

J Estimated Value (CLP Flag)
MDL Method Detection Limit
ND Analyte Not Detected

A01 Detection and quantitation limits are raised due to sample dilution.

Practical Quantitation Limit

Report ID: 1000992735 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 23 of 23