

April 16, 2020

County of Santa Cruz Department of Public Works - Kimberly Finley, Chief Real Property Agent - Travis Cary, Director of Capital Projects 701 Ocean Street, Room 410 Santa Cruz, CA 95060

Kimberly.Finley@santacruzcounty.us Travis.Cary@santacruzcounty.us

Update: Data Submittal Package: Soil Vapor, Groundwater and Soil Sample Results Expedited Site Characterization for an Imminent Multi-Use Development

Site:County of Santa Cruz Redevelopment Parcels1412, 1438, 1500 and 1514 Capitola Road, Santa Cruz (see Location Map, Figure 1)

1.0 INTRODUCTION

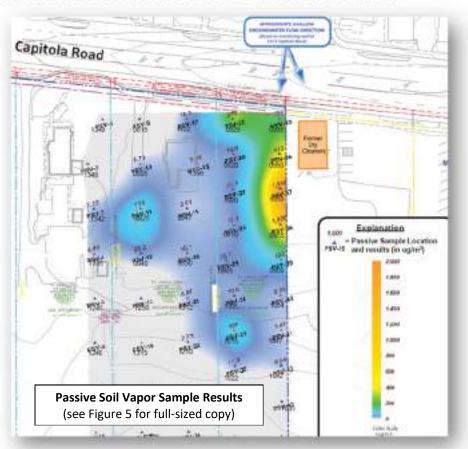
This data submittal package documents our recent 2020 field mobilization (completed April 1-2) and includes summary figures/tables, State-certified laboratory results, and field data (logs and photos). This sampling mobilization was completed in accordance with our February 17th, *Workplan*⁽¹⁾ (WHA, 2020a) and follow-up March 20th, *Update*⁽²⁾, which were submitted to the Central Coast Regional Water Quality Control Board. The 2 step approach included:

- 1. A preliminary screening mobilization that included the collection of 44 passive soil gas samples.
- 2. A follow-up round of soil, soil gas, and groundwater samples based on the results data obtained from the initial round of passive sample results.

This data package documents field work and laboratory testing of soil gas (active), groundwater and soil samples that were collected to target the approximate lateral limits and potential hot-spot locations of PCE (tetrachloroethylene) recently detected during completion of the initial shallow, passive soil vapor survey. Follow-up sampling (Step 2) was designed to evaluate impacts of an encroaching dry cleaning solvent release that appears to have originated from the adjoining property to the east (see *Site-Vicinity Aerial Map*, Figure 2). The results of the current round of testing further documents on-site conditions, confirms the source of the detected PCE is from the adjoining property, and provides data needed for the design of vapor barriers that will be needed for an imminent, multi-use development project planned.

¹: Workplan link: <u>Workplan (Passive Soil Gas & GW), February 17.</u>

²: Update Link: *Passive Soil Gas Results & Planned Follow-up Sampling, March 20, 2020*.


2.0 BACKGROUND

A recent property screening assessment (RRM, 2020b) was completed in advance of a major redevelopment project that is about to break ground at the 3.7-acre subject site⁽³⁾. The property screening consisted of the collection of two (2), shallow soil vapor samples obtained along the northeastern property line, and the lab results contained detected elevated concentrations of the dry cleaning solvent PCE in (see Figure 2). A follow-up review of historic land use at, and in the vicinity of the site indicates the source of the detected property line contamination is from a former dry cleaning business that operated on the adjoining property to the east (i.e., Former Fairway Dry Cleaners, 1600 Capitola Road).

2.1 Passive Soil Gas Screening

On February 25, 2020, forty-four (44) passive soil gas samplers were installed in a grid pattern that

extended outward from the property boundary adjoining the former Fairway Dry Cleaners. The passive samples were analyzed by the State-certified testing laboratory for a standard suite of chlorinated solvents by EPA Method 8260, including the dry cleaning solvent PCE and its volatile degradation compounds: Trichloroethene (TCE), cis-1,2-Dichloroethene (DCE), and Vinyl Chloride. The soil gas sample results have been tabulated (Table 1) with agency-established, along health-based threshold limits for commercial and residential land uses (i.e., the Environmental Screening Levels, ESLs) (RWQCB-SFB, 2019). The passive soil vapor results are shown on a plan view map (see Figure 5, and clip to the right). The passive sample results indicated the following:

³: Grants have been acquired to redevelop the underutilized vacant site into a mixed-use development consisting of a medical clinic (Santa Cruz Community Health Center} and dental office (Dientes), and 56 affordable apartments (residential). Development environmental planning permits are due in April and initial grading earthwork is scheduled for June 2020. The planned building layout is shown on Figure 3.

- The former Fairway Dry Cleaners located along the northeastern property boundary (see Figure 2) appears to be the source of the detected volatile solvents (i.e., PCE). The highest concentrations of PCE were detected along the property boundary (PSV-37 : 1,830 ug/m³). The agency threshold limits for commercial and residential land uses are 67 and 15 ug/m3, respectively.
- The grid of shallow passive soil sampling data indicates that concentrations of all chlorinated solvents drop off (attenuate) as you move westward on the property. This preliminary screening suggested the extent of elevated PCE concentrations are somewhat limited in extent (see Figure 5).

3.0 CURRENT FIELD WORK AND LABORATORY RESULTS

The follow-up, sampling mobilization (Step 2) was completed on April 1-2. Field documentation is contained in Appendix A, which includes drilling logs, photos, observation notes and sampling protocols. The groundwater, soil vapor and discrete soil samples were collected to evaluate the following:

3.1 PCE Plume Encroachment (Figure 4, Table 3):

Six (6) groundwater samples (GW-1 through GW-6) were collected to define the limits of dissolved solvent compounds (i.e., the PCE-impacted groundwater plume) that could potentially be an off-gassing source for elevated PCE concentrations detected in shallow, passive soil vapor samples.

Groundwater was encountered at depths of approximately 22 to 26 feet below ground surface and is assumed to flow in the south-southeast direction based on nearby monitoring network measurements. The solvent detections in groundwater are presented on Figure 4 and Table 3. In addition, Figure 4 presents an approximate footprint of the 100-ug/L concentration, dissolved PCE plume. Note: the agency threshold limit for a potential drinking water resource is 5 ug/L, and the ESL threshold for potential off-gassing of PCE-impacted groundwater to soil is a concentration of 0.64 ug/L (see Table 3).

Dissolved concentrations in groundwater (i.e., the PCE plume) acts like a tracer and can be used to find the source of a contaminant release. The shape of the plume (Figure 4) suggests that the source of the PCE release is the adjoining property to the east where a dry cleaner business formerly operated.

3.2 Soil Vapor Encroachment (Figure 6, Table 2)

Active soil gas samples were collected on April 1st to help calibrate the preliminary sample results obtained in February (i.e., the shallow, passive soil sample results). Subsurface soil vapor was acquired using laboratory-provided, vacuum sample cannisters that "actively" extracted soil vapors from targeted depths of 5-feet and 15-feet below ground surface (photos in Appendix A). Figure 6 presents a plan view of the site, sample locations, and analytical results. Figures 7a and 7b present separate plan view, isocontour maps of PCE concentrations detected at 5- and 15-foot sample depths, respectively.

Comparing the concentration changes in soil gas concentrations from across the site at the two (2) depths at (i.e., 5- and 15-foot) provides insight regarding the likely source of detected PCE contamination. The Isocontour maps provide the following information:

- Shallow soil gas sample results (Figure 7a) suggest the former dry cleaner building, located just across the northeast property boundary is the source for elevated PCE concentrations detected in shallow (5-foot) vapor samples. And,
- 2) Elevated concentrations detected in the deeper, 15-foot soil gas samples (Figure 7b), suggest the encroaching, dissolved PCE plume (described in Section 3.1, above) is a significant, secondary source of PCE (i.e., off-gassing from the dissolved PCE plume). Note: much higher PCE concentrations were detected in a majority of the deeper sample locations (i.e., SV-3, -4, -5, and -6, Figure 6).

3.3 Soil Sampling Results (Table 4)

Soil samples were collected from six (6) locations to evaluate whether there are any detections of solvent concentrations that would be indicative of an on-site source. A total of twenty-two (22) soil samples were laboratory analyzed and tested for volatile contaminant compounds including chlorinated solvents (i.e., PCE), and fuel constituents (i.e., Benzene). Samples for testing were acquired:

- At shallow depths (3-ft below ground surface) to determine if a near surface source of PCE was present at each soil core location (sample locations shown on Figure 4).
- Generally, at the interface of a lithological change from shallow clayey sand to a silty sand (4.5-to-6 feet below ground surface).
- At an intermediate depth (12-feet below ground surface). And
- At the groundwater interface.

Table 4 shows that some elevated PCE concentrations were detected in shallow soils collected at the property boundary immediately adjacent to the former dry cleaner building (i.e., sample locations SS3 and GW-5).

4.0 CONCLUSION AND RECOMMENDATION

Elevated concentrations, primarily as the volatile solvent compound PCE, were detected in groundwater and soil vapor (shallow and deep detections). Collected data indicates the source of the contamination is from the adjoining property to the east where a dry cleaning business formerly operated in the existing building that currently houses a laundromat (1600 Capitola Road). Based on the results of this assessment:

1) This data package should be forwarded to the Regional Water Quality Control Board, Central Coast Region (RWQCB-CC) as the overseeing agency so the agency can notify the adjoining

property owner of site conditions and direct them to take responsibility for the characterization and cleanup of the PCE release.

2) This data package will provide the basis for vapor barrier abatement that can be designed to be protective of future commercial and residential occupants. Based on soil vapor concentrations detected, this vapor barrier mitigation will be required for any residential or commercial development of the site and abatement design specifications should be forwarded to the RWQCB-CC for their review and approval.

Limitations: Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either express or implied. The analysis and conclusions in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein. If you have any questions regarding this report, or any aspect of this project, please contact us at (831) 722-3580.

Sincerely,

WEBER, HAYES AND ASSOCIATES

By

Pat Hoban, PG Principal Geologist

Figure 1:	Location Map (topographic)
Figure 2:	Vicinity Map (aerial)
Figure 3:	Site Map with Sample Locations
Figure 4:	Groundwater Sample Results (w/ dissolved PCE plume)
Figure 5:	Passive Soil Vapor Survey Results
Figure 6:	Active Soil Vapor Results
Figure 7:	 a) Isocontour Map of 5-ft Soil Vapor Detections
	b) Isocontour Map of 15-ft Soil Vapor Detections
Table 1:	Passive Soil Vapor Sample Results
Table 2:	Active Soil Vapor Sample Results
Table 3:	Groundwater Sample Results
Table 4:	Discrete Soil Sample Results
Appendix A:	Field Documentation (Observations, Logs, Photos & Methodology)
Appendix B:	State Certified Laboratory Reports (Soil, Soil Vapor & Groundwater Analysis)

REFERENCES

California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SFB):

- (CRWQCB-SFB, 2019) guideline document: "Screening for Environmental Concerns at Sites with Contaminated Soil and *Groundwater*", Final January.
 - o <u>https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html</u>

California Regional Water Quality Control Board, Central Coast Region (RWQCB-CC):

 - (GeoTracker, SC-Development Properties): GeoTracker (agency) archive of site-specific reports for the 1412, 1438, 1500 and 1514 Capitola Road properties, are at:
 https://geotracker.waterboards.ca.gov/profile report.asp?global id=T10000014098

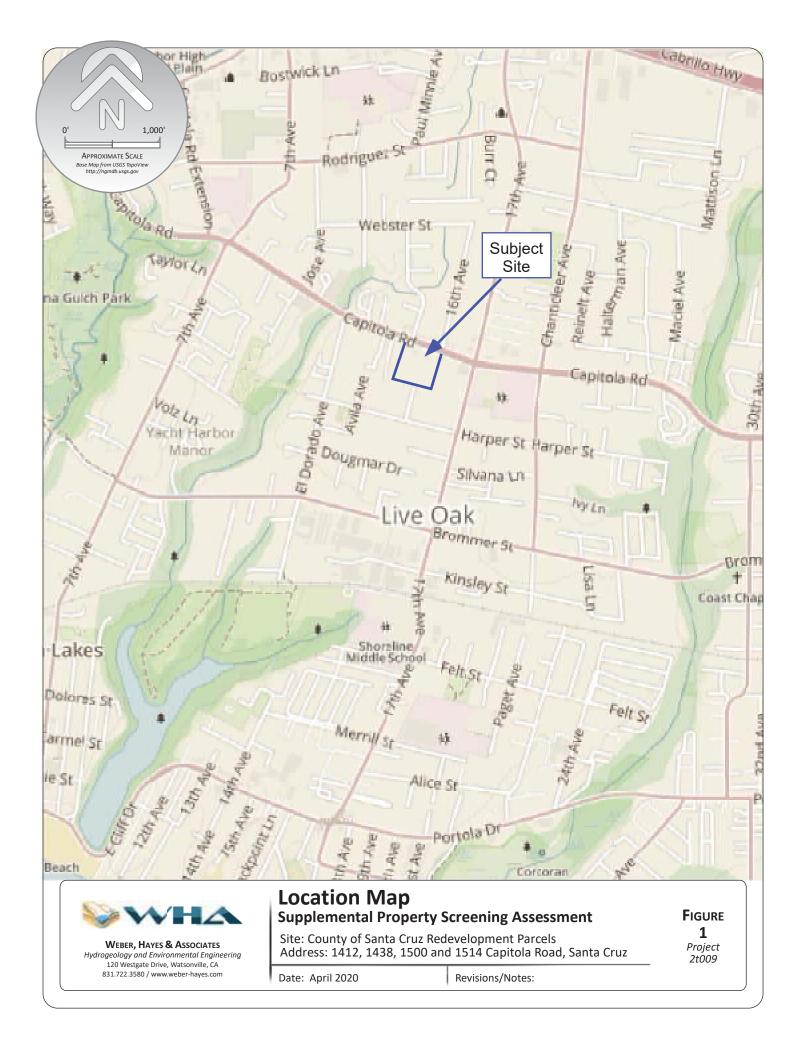
Earth Systems report regarding (1412, 1438, 1500, and 1514 Capitola Road:

- (Earth Systems, 2018), *Revised Geotechnical Engineering Report*, October 24.

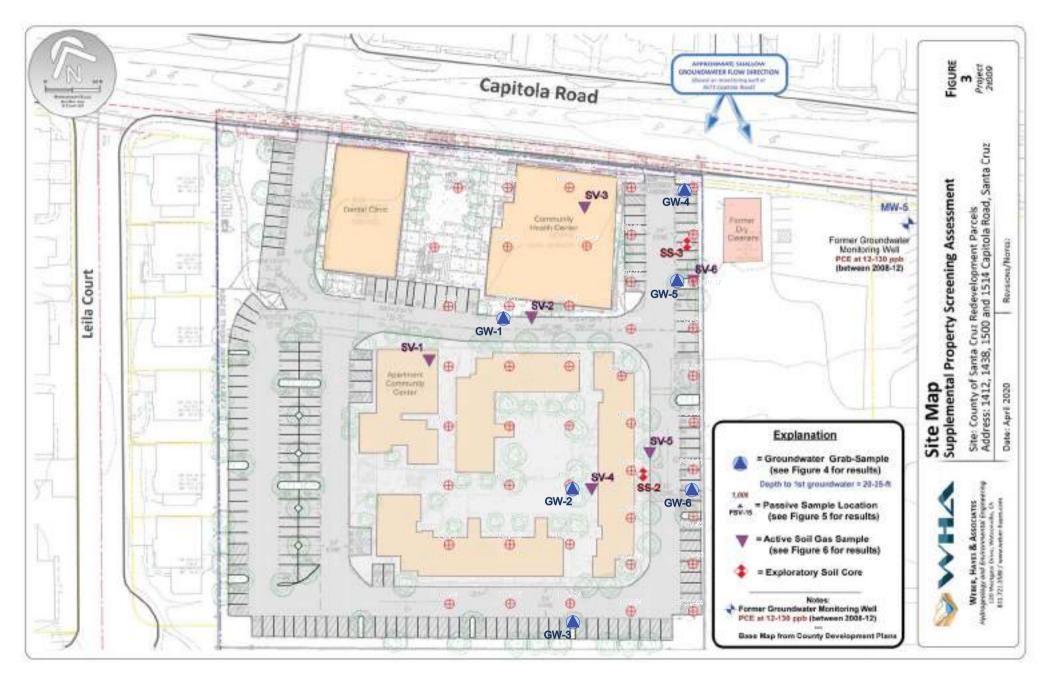
Remediation Risk Management, Inc. (RRM) reports regarding 1412, 1438, 1500, and 1514 Capitola Road:

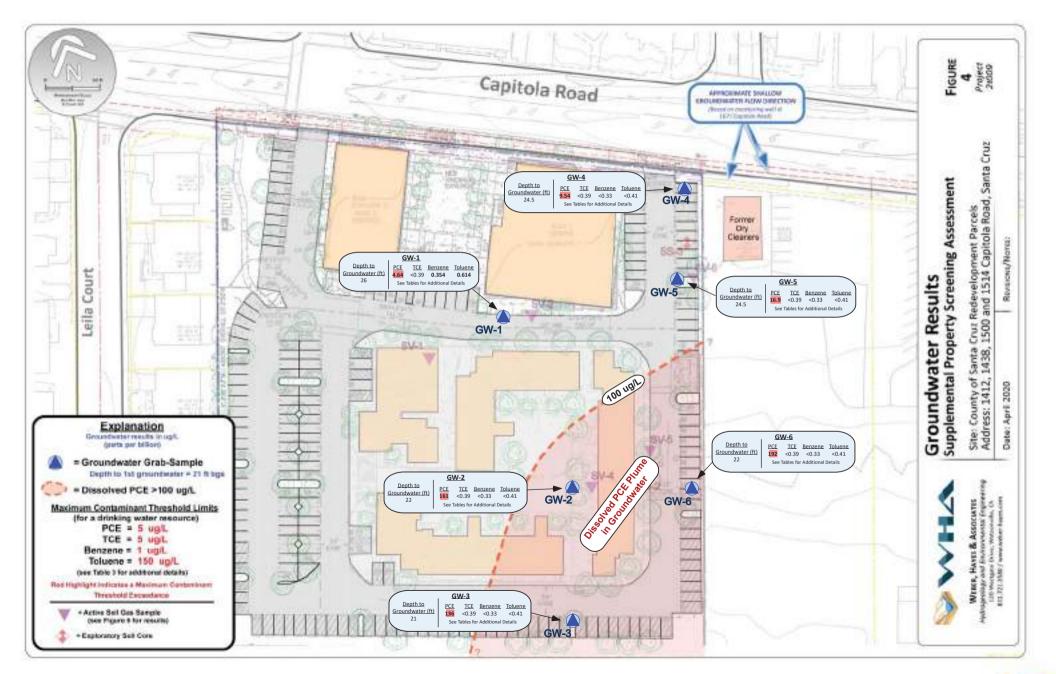
- (RRM, 1994): *Remedial Action Summary Report for 1438 Capitola Road,* October 3.
- (RRM, 2020a): Phase I Environmental Site Assessment (ESA), January 6.
 - <u>https://documents.geotracker.waterboards.ca.gov/regulators/deliverable_documents/78795340</u> <u>65/2020.01.06%20Phase%20I%20ESA%20(17th%20&%20Capitola%20Rd)%20(RRM).pdf</u>
- (RRM, 2020b): Limited Soil Vapor Investigation (Phase II), January 20.
 - <u>https://documents.geotracker.waterboards.ca.gov/regulators/deliverable_documents/15178004</u> <u>50/2020-01-24_Phase%202%20Vapor%20(Draft)%20(RRM).pdf</u>

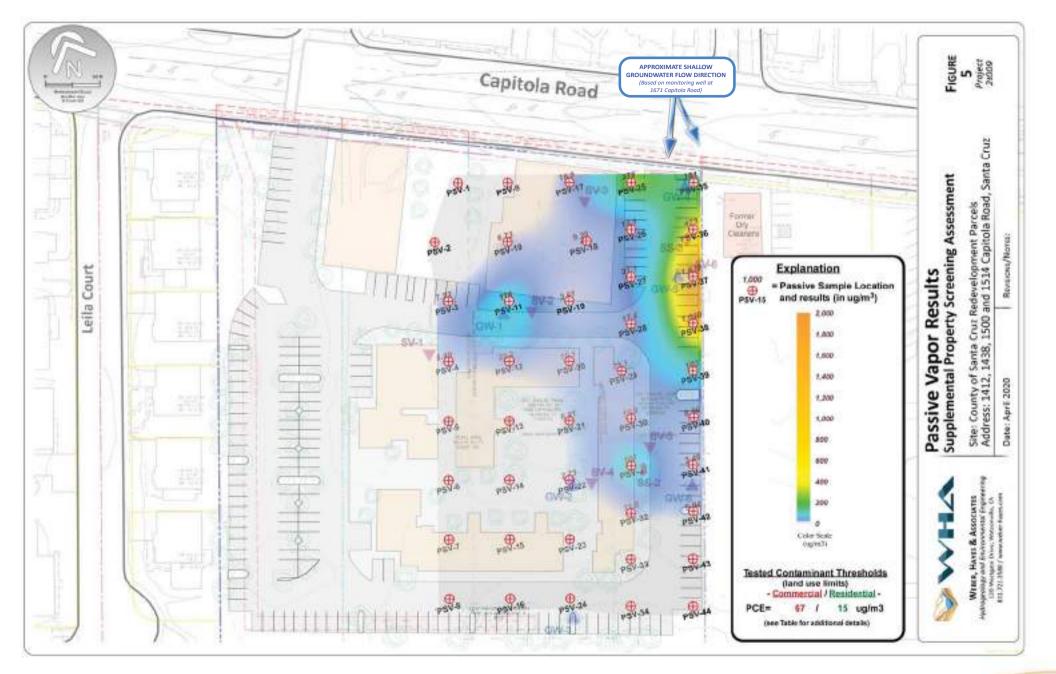
Reports summarizing the Live Oak Texaco fuel leak case (1990-2012) at 1671 Capitola Road:

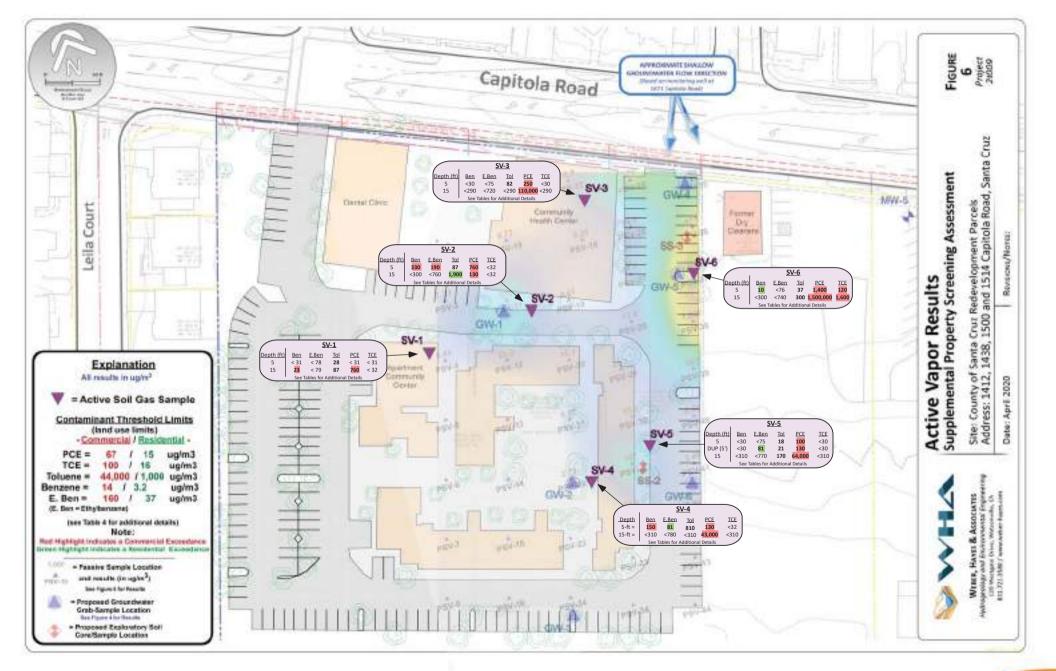

- (AES, 2012): A+ Environmental Solutions report: *Groundwater Monitoring Report & Request for Case Closure, May 18.*
- (Clearwater Group, 2011): Site Conceptual Model (SCM) Report, June
- (GeoTracker, Texaco): Geotracker Archive of site-specific reports for this fuel leak site are at: o <u>https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0608700286</u>

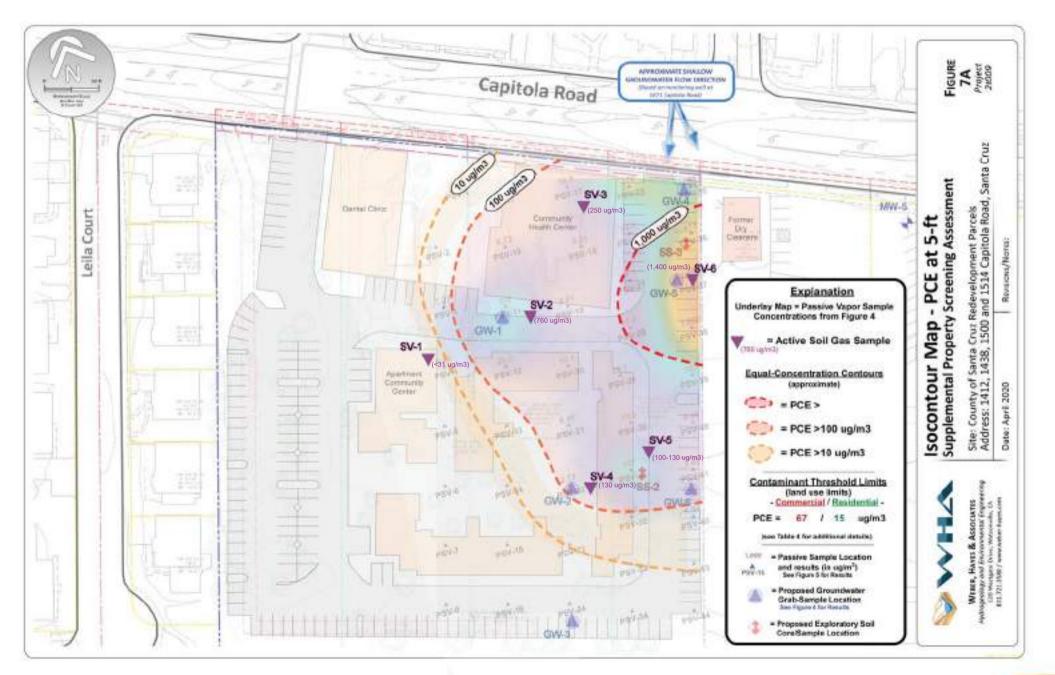
Weber, Hayes and Associates (WHA) reports for 1412, 1438, 1500 and 1514 Capitola Road, Santa Cruz:

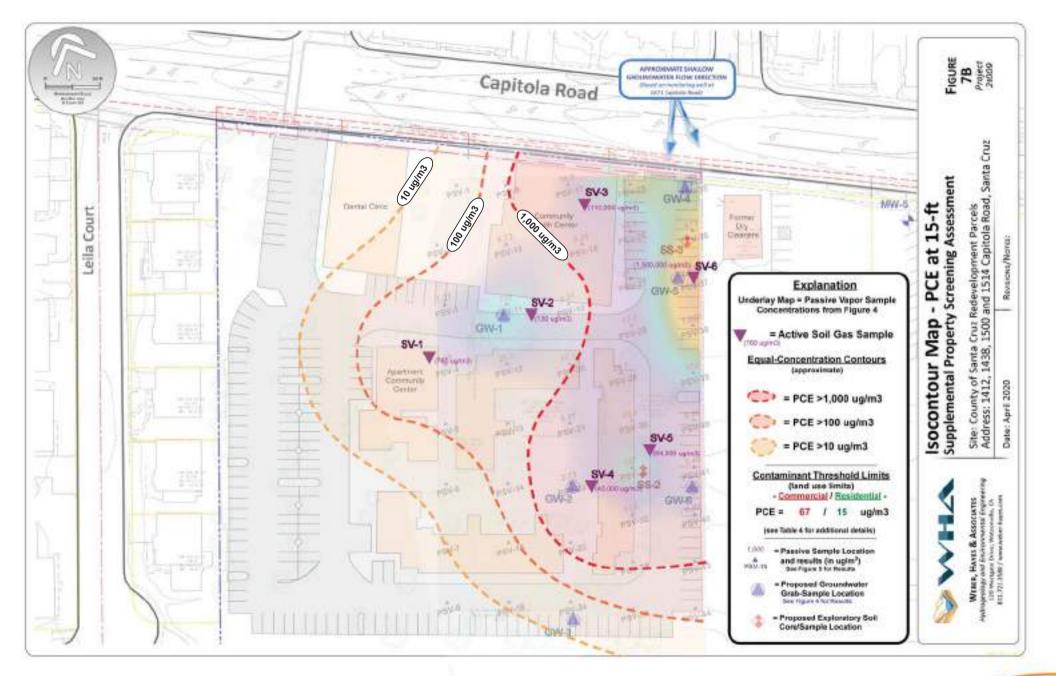

- (WHA, 2020a): Workplan Expedited Site Characterization for an Imminent Multi-use Redevelopment, Feb 17.
 - o <u>https://drive.google.com/open?id=182qjxIPfFHPRDrzmWrDbf3YC3IVRQFEo</u>
- (WHA, 2020b): Update: Passive Soil Gas Sample Results & Planned Follow-up Sampling, Mar-20.
 - <u>https://documents.geotracker.waterboards.ca.gov/regulators/deliverable_documents/97832619</u> <u>54/2020-03-20%20Update%20to%20Workplan.pdf</u>


Figures


- Figure 1: Location Map (topographic)
- Figure 2: Vicinity Map (aerial)
- Figure 3: Site Map
- Figure 4: Groundwater Sample Results (w/ dissolved PCE plume)
- Figure 5: Passive Soil Vapor Survey Results
- Figure 6: Active Soil Vapor Results
- Figure 7: a) Isocontour Map of 5-ft Soil Vapor Detections b) Isocontour Map of 15-ft Soil Vapor Detections







<u>Tables</u>

Table 2: Active Soil Vapor Sample Results

Table 3: Groundwater Sample Results

Table 4: Discrete Soil Sample Results

Weber, Hayes & Associates

Table 1 Passive Soil Gas Sampling

Volatile Dry Cleaning Solvent Compound Testing Results

Seven Day Sampling Event (February 25-March 3, 2020)

1412-1514 Capitola Road

. Santa Cruz

Sample Informatio	n					r atory Analytical R bil vapor results are in u				
	Cample Donth			Dichloroet	thene (DCE)					
Sample ID	Sample Depth (feet below ground surface)	PCE (Tetrachloroethene)	TCE (Trichloroethene)	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	Benzene	Toluene	Ethylbenzene	Xylenes
PSV-1	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29 <1.29 4.76 <6.05 <1.29 2.56 J 26.6		<2.99	<2.88	
PSV-2	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	2.56 J	26.6	<2.99	<2.88
PSV-3	3 ft	7.23	<2.92	<1.84	<2.25	<1.29	6.74	17.3	<2.99	<2.88
PSV-4	3 ft	6.49	<2.92	<1.84	<2.25	<1.29	3.62 J	<6.05	<2.99	<2.88
PSV-5	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	4.58 J	<6.05	<2.99	8.38
PSV-6	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	4.31 J	<6.05	<2.99	12.68
PSV-7	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	3.08 J	<6.05	<2.99	<2.88
PSV-8	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	2.98 J	<6.05	<2.99	<2.88
PSV-9	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-10	3 ft	6.73	<2.92	<1.84	<2.25	<1.29	3.37 J	<6.05	<2.99	<2.88
PSV-11	3 ft	118	5.58	<1.84	<2.25	<1.29	7.26	10.9	<2.99	<2.88
PSV-12	3 ft	25.2	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-13	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-14	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	11	<2.99	<2.88
PSV-15	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-16	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	3.61 J	<6.05	<2.99	<2.88
PSV-17	3 ft	18.9	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-18	3 ft	9.28	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-19	3 ft	3.61	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-20	3 ft	10.1	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-20-dup	3 ft	10.8	<2.92	<1.84	<2.25	<1.29	1.91 J	<6.05	<2.99	<2.88
PSV-21	3 ft	6.91	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-22	3 ft	2.73	<2.92	<1.84	<2.25	<1.29	1.90 J	<6.05	<2.99	<2.88
PSV-23	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	3.16 J	<6.05	<2.99	<2.88
PSV-24	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	3.54 J	<6.05	<2.99	<2.88
PSV-25	3 ft	378	19.7	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-26	3 ft	18.8	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-27	3 ft	31.1	<2.92	<1.84	<2.25	<1.29	<1.84	.84 <6.05 <2.9		<2.88
PSV-28	3 ft	17.4	<2.92	<1.84	<2.25	<1.29	1.95 J	<6.05	<2.99	<2.88
California DTSC-Modified Soil Residential / Commercial		15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / 5.2	3.2 / 14	10,333 / 43,333	N E	N E
Environmental Screening Residential / Comme		15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / <mark>5.2</mark>	3.2 / 14	10,000 / 44,000	37 / 160	3,500 / 15,000

Table 1

Passive Soil Gas Sampling

Volatile Dry Cleaning Solvent Compound Testing Results

Seven Day Sampling Event (February 25-March 3, 2020)

1412-1514 Capitola Road

Santa Cruz

Sample Information	n					ratory Analytical R oil vapor results are in L				
Sample	Sample Depth	PCE	TCE	Dichloroet	thene (DCE)	Vinyl	_			
ID	(feet below ground surface)	(Tetrachloroethene)	(Trichloroethene)	cis-1,2-DCE	trans-1,2-DCE	Chloride	Benzene	Toluene	Ethylbenzene	Xylenes
PSV-29	3 ft	22.1	<2.92	<1.84	<2.25	<1.29	<1.84	8.86	<2.99	<2.88
PSV-30	3 ft	10.6	<2.92	<1.84	<2.25	<1.29	4.26 J	<6.05	<2.99	<2.88
PSV-31	3 ft	107	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-32	3 ft	11.8	<2.92	<1.84	<2.25	<1.29	3.73 J	42.8	<2.99	<2.88
PSV-33	3 ft	<2.42	<2.92	<1.84	<2.26	<1.29	2.03 J	<6.05	<2.99	<2.88
PSV-34	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	7.94	<2.99	<2.88
PSV-35	3 ft	181	<2.92	<1.84	<2.25	<1.29	2.28 J	<6.05	<2.99	<2.88
PSV-35-dup	3 ft	240	5.26	<1.84	<2.25	<1.29	2.56 J	<6.05	<2.99	<2.88
PSV-36	3 ft	473	9.74	<1.84	<2.25	<1.29	1.98 J	<6.05	<2.99	<2.88
PSV-37	3 ft	1,830	16.1	2.38	<2.25	<1.29	<1.84	24.5	<2.99	<2.88
PSV-38	3 ft	1,020	18.5	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-39	3 ft	103	<2.92	<1.84	<2.25	<1.29	3.16 J	<6.05	<2.99	<2.88
PSV-39-dup	3 ft	80.7	<2.92	<1.84	<2.25	<1.29	2.95 J	<6.05	<2.99	<2.88
PSV-40	3 ft	6.96	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-41	3 ft	3.48	<2.92	<1.84	<2.25	<1.29	2.75 J	11.6	<2.99	<2.88
PSV-42	3 ft	6.94	<2.92	<1.84	<2.25	<1.29	2.10 J	<6.05	<2.99	<2.88
PSV-43	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-44	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
PSV-44-dup	3 ft	<2.42	<2.92	<1.84	<2.25	<1.29	<1.84	<6.05	<2.99	<2.88
California DTSC-Modified Soil Gas Levels ⁽²⁾ Residential / Commercial Land Use		15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / 5.2	3.2 / 14	10,333 / 43,333	N E	N E
Environmental Screening Residential / Commen	Levels ⁽¹⁾ rcial	15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / 5.2	3.2 / 1 4	10,000 / 44,000	37 / 160	3,500 / 15,000

Notes:

1 = CA DTSC Modified Air Screening Levels: Human health risk thresholds established by the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 3, April 2019.

< https://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-June-2018.pdf >

2 = Environmental Screening Levels (ESLs): Human health risk thresholds established by the San Francisco Bay Regional Water Quality Control Board. Source: the User's Guide: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final, Jan 2019) - <https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/ESLs.html >.

- Note: The ESLs for all media (soil, soil vapor, groundwater were generated to to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted based on chemical transport and their effect on receptors (i.e. human health, groundwater resources, ecological). The ESLs listed in this summary table are the most conservative, "Tier 1 ESLs", and are based on shallow soils (<3m), groundwater is a current or potential source of drinking water.</p>

BOLD =	Indicates the compound was detected.	PCE = Tetrachloroethene
< X =	Constituent not detected above laboratory's Method Detection Limit (MDL), X.	TCE= Trichloroethene
BOLD =	Analytical result exceeds Commercial US EPA RSL, CA DTSC or ESL threshold.	DCE = Dichloroethene
BOLD =	Analytical result exceeds Residential US EPA RSL, CA DTSC or ESL threshold.	ote: TCE and DCE are degradation (daughter products) of PCE

NE = Not Established

Table 2 Active <mark>Soil Vapor Analytical Results</mark> Volatile Organic Compounds 1412-1514 Capitola Road

Ir			1			All soil	vapor results are in mi	crograms per meter cu	ıbed (ug/m³)				nr		
	Sample Inform	nation						ganic Compounds (ry Analysis by EPA Method						ak Check Monito propyl Alcohol)	oring
Sample	Sample Information Sample Sample Depth (feet below)		PCE	TCE	Dichloroetl	hene (DCE)	Vinyl chloride	Benzene	Toluene	Ethylbenzene	Xylenes	Other VOCs	Field Shroud Concentration	Laboratory Results	Calculated Leakage
Date	ID	(feet below ground surface)	(Tetrachloroethene)	(Trichloroethene)	cis-1,2-DCE	trans-1,2-DCE							(avg., in ppm)	(in ug/m ³)	(percent, %)
	SV-1	5 ft	<5.3^	<5.9^	<31	<31	<4.5^*	<2.5^	28	<5.6^	<160	Acetone = 91 Propylene = 2,000' Carbon Disulfide = 11 n-Heptane = 19 Hexane = 48 All Other VOC's =ND Acetone = 36	133.33	< 7.3	0%
		15 ft	760	<6^	<32	<32	<4.6^*	23	87	<5.7^	42	Cyclohexane = 95 n-Heptane = 32 Hexane = 61 All Other VOC's =ND	100	< 7.4	0%
	SV-2	5 ft	130	<6.1^	<32	<32	<4.6^*	330	1,900	190	870	Acetone = 62 Propylene = 360 Cyclohexane = 99 Ethanol = 810 n-Heptane = 490 Hexane = 150 1.Ethyl-4-methylbenzene = 72 1.2,4-Trimethylbenzene = 34 All Other VOC's =ND	100	< 7.5	0%
		15 ft	38,000	<57^*	<35^	<300	<44^*	<24^*	170	<54^*	<1,500	All Other VOC's = ND	88.33	< 71	3%
2020	SV-3	5 ft	250	<5.7^	21	<30	<4.4^*	<2.4^	82	<5.4^	<150	Acetone = 120 Propylene = 400 carbon disulfide = 21 n-Heptane = 15 All Other VOC's = ND	125	< 7	0%
		15 ft	110,000	<55^*	<33^	<290	<42^*	<23^*	<290	<52^*	<1,400	Propylene =150 Hexane = 470 All Other VOC's =ND	95	< 68	3%
April 1st, 2020	SV-4	5 ft	130	<6^	<32	<32	<4.6^*	150	810	81	370	A deterne = 150 Propylene = 2,800 Ethanol = 63 1 -Ethyl-4-methylbenzene = 28 Hexane = 79 1,24-Triethylbenzene = 26 All Other VOC's =ND	136.66	< 7.5	0%
		15 ft	43,000	<60^*	<36^	<310	<46^*	<25^*	<310	<57^*	<1,600	Hexane = 770 All Other VOC's =ND	175	< 74	2%
		5-ft	100	<5.7^	<30	<30	<4.4^*	<2.4^	18	<5.4^	<150	Propylene = 230 n-Heptane = 16 Hexane = 46 All Other VOC's =ND Acetone = 79	68.3	< 30	2%
	SV-5	Duplicate A (5-ft)	130	<5.7^	<30	<30	<4.4^*	<2.4^	21	81	310	Accounte 7.3 Propylene = 270 1,2,4-Trimethylbenzene = 210 Ethanol = 14 1-Ethyl-4-methylbenzene = 170 n-Heptane = 18 Hexane = 53 1,2,4-Trimethylbenzene = 56 All Other VOCS = ND	68.3	220	13%
		15 ft	64,000	<59^*	<35^	<310	<45^*	<25^*	170	<55^*	<1,500	Hexane = 910 All Other VOC's =ND	53.33	< 72	5%
	SV-6	5 ft	1,400	120	170	<31	<4.4^*	10	37	<5.5^	<150	Propylene = 220 Hexane = 41 All Other VOC's =ND	162.5	< 7.2	0%
		15 ft	1,500,000	1,600	<34^	<300	<43^*	<24^*	300	<53^*	<1,500	All Other VOC's = ND	212.5	< 70	1%
Environmental Screening Levels ⁽¹⁾ Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)		15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / 5.2	3.2 / 14	1,000 / 44,000	37 / 160	3,500 / 15,000	Acetone = 1,100,000 / 4,500,000 All Other Detected VOC's = NE				
California DTSC-Modified Soil Gas Levels ⁽²⁾ Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)		15 / 67	16 / 100	280 / 1,200	2,800 / 12,000	0.32 / 5.2	3.2 / 14	1,033 / 43,333	NE	NE	All Other Detected VOC's = NE				

Notes

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, set by the San Francisco Bay Regional Water Quality Control Board (Interim Final, Jan 2019) https://www.waterboards.ca.gov/sanfranciscobay/water_lisues/programs/ESL/ESLs.html. The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted. The ESLs used in this table were obtained from the above referenced document, "Tier 1 ESLs", based on shallow soils (<3m), groundwater is a current or potential source of drinking water.

2 = CA DTSC Modified Air Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 3, April 2019. < https://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-June-2018.pdf >

< X = Constituent not detected above laboratory's Practical Quantiation Limit (PQL), X.

A = Laboratory Method Detection Limit (MDL) was used due to the PQL being higher than an established screening level

< X^* = Constituent was non-detected however the Method Detction Limit (MDL) was above the ESL or DTSC threshold.

BOLD = Analytical result exceeds Commercial US EPA RSL, CA DTSC or ESL threshold.

BOLD = Analytical result exceeds Residential US EPA RSL, CA DTSC or ESL threshold.

BOLD = Compound detected.

J = Laboratory note: Estimated value between the laboratory method detection limit and PQL

ND = Not Detected

-- = Sample was not analyzed for this constituent

NE = Not Established

Table 3

Groundwater Analytical Results

Volatile Organic Compounds (VOCs)

1412-1514 Capitola Road, Santa Cruz

All water results are in micrograms per liter (ug/L)

	Sample Informatio	n			Va	blatile Organic by EPA Meth	-		
	Doubh To Misson	Concern Internet	Solv	rents		Fuel Con			
Location ID	Depth To Water (in feet, below goround surface)	Screen Interval (in feet, below ground surface)	PCE	TCE	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOC's
GW-1	26-ft	23-28 ft	4.64	<1.00	0.354 J	0.614 J	<1.00	<3.00	Acetone = 14 J Chloromethane = 0.428 J All Other VOC'S = ND
GW-2	22-ft	19-24 ft	161	<1.00	<1.00	<1.00	<1.00	<3.00	Di-Isopropyl Ether = 0.417 J All Other VOC's = ND
GW-3	21-ft	19-24 ft	136	<1.00	<1.00	<1.00	<1.00	<3.00	All Other VOC's = ND
GW-4	24.5-ft	23-28 ft	9.54	<1.00	<1.00	<1.00	<1.00	<3.00	All Other VOC's = ND
GW-5	24.5-ft	27-32 ft	16.9	<1.00	<1.00	<1.00	<1.00	<3.00	All Other VOC's = ND
GW-6	22-ft	23-28 ft	192	0.403 J	<1.00	<1.00	<1.00	<3.00	All Other VOC's = ND
Lab	oratory Reported Detection Lin	nit (RDL)	1.0	1.0	1.0	1.0	1.0	3.0	Varies
	Im Contamination Lim nan Health ESL if no MCL es		5	5	1	150	300	1,750	Acetone = 14,000 Chloromethane = 190
Environ	mental Screening Leve	ls (ESLs) ⁽²⁾	0.64 (Vapor Intrusion)	1.2 (Vapor Intrusion)	0.42 (vapor intrusion)	40 (odor nuisance)	3.5 (vapor intrusion)	20 (odor nuisance)	Acetone = 1,500 Chloromethane = 190

Notes

1 = <u>Water Quality Goals</u> (WQGs): The listed Water Quality Goals listed are based on Maximum Contaminant Levels (MCLs) - see note below. However, if a MCL does not exist for a constituent, the listed WQG is based on Environmental Screening Levels (ESLs) - constituents with a WQG based on an ESLs are identified with an asterisk ("(*)", see note below.

Maximum Contaminant Levels (MCLs): < <u>https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Chemicalcontaminants.html</u> >. MCL's are drinking water standards established in Title 22 of the California Code of Regulations for safe water coming from a tap or a drinking water aquifer. If no MCL is available the corresponding *Environmental Screening Level (ESL, below)* health based pathway will be used in its place.

2 = <u>Environmental Screening Levels</u> (ESLs): < <u>https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html</u>> The ESLs are agency-stablished threshold concentrations intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted based on risk pathways (protection of human heath, groundwater and/or ecological). Source: The Regional Water Quality Control Board (San Francisco Bay Region) guideline document: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Final version, 2019).

- BOLD
- = Red highlight indictates the laboratory-detected concentration is equal to or greater than the corresponding MCL or ESL

 $< X = \frac{\text{Constituent } \underline{not \ detected}}{\text{limits.}}$ above the laboratory-*Reported Detection Limit (RDL*, X). Refer to laboratory reports for detection

RDL = Reported Detection Limit = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise (based on Laboratory's Blank (QA/QC).

MDL = Method Detection Limit - The minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.

J = This "J-Flag" is a lab-reported value that is detected at a concentration that is below the laboratory's RDL but above the MDL - the detection is considered an accurate detection of the compound, but it is an estimated value.

bgs= below ground surface

NE= Not Established

Table 4Summary of Soil Analytical ResultsVolatile Organic Compounds1412-1514 Capitola Road, Santa Cruz

All soil results are in milligrams per Kilogram (mg/Kg)

S	ample Informati	ion				Volati	i le Organic Comp by EPA Method 8				
Sample Date	Sample ID	Depth (feet bgs)	PCE (Tetrachloroethene)	TCE (Trichloroethene)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthalene	Other Compounds
		3	0.00162 J	<0.00114	<0.00114	<0.00569	<0.00285	<0.00740	<0.00114	<0.0142	2-Butanone (MEK) = 0.0223 J All Other VOC's = ND
	SS-2	4.5	0.00132 J	<0.00119	<0.00119	<0.00594	<0.00297	<0.00773	<0.00119	<0.0149	2-Butanone (MEK) = 0.0308 All Other VOC's = ND
		12	0.0871	<0.00107	<0.00107	<0.00537	<0.00268	<0.00698	<0.00107	<0.0134	2-Butanone (MEK) = 0.0160 J All Other VOC's = ND
		3	0.02	0.00423	<0.00126	<0.00629	<0.00315	<0.00818	<0.00126	<0.0157	2-Butanone (MEK) = 0.0488 All Other VOC's = ND
	SS-3	6	0.484	0.00253	<0.00117	<0.00585	<0.00292	<0.00760	<0.00117	<0.0146	2-Butanone (MEK) = 0.0475 All Other VOC's = ND
		12	0.103	<0.00109	<0.00109	<0.00546	<0.00273	<0.00710	<0.00109	<0.0137	2-Butanone (MEK) = 0.0247 J All Other VOC's = ND
		3	0.00213 J	<0.00124	<0.00124	<0.00618	<0.00309	<0.00803	<0.00124	<0.0155	2-Butanone (MEK) = 0.0607 All Other VOC's = ND
		7	0.005	<0.00118	<0.00118	<0.00590	<0.00295	<0.00767	<0.00118	<0.0147	2-Butanone (MEK) = 0.0438 All Other VOC's = ND
	GW-1	12	0.00137 J	<0.00110	<0.00110	0.00375 J	<0.00274	<0.00713	<0.00110	<0.0137	2-Butanone (MEK) = 0.0386 All Other VOC's = ND
2020		24	<0.00308	<0.00123	<0.00123	0.00258 J	<0.00308	<0.00801	<0.00123	<0.0154	2-Butanone (MEK) = 0.0175 J
2nd, 2		3	<0.00306	<0.00122	<0.00122	0.0176	0.000929 J	<0.00795	<0.00122	<0.0153	All Other VOC's = ND 2-Butanone (MEK) = 0.0322
<u>જ</u>	GW-3	6	<0.00303	<0.00121	<0.00121	0.00192 J	<0.00303	<0.00788	<0.00121	<0.0152	All Other VOC's = ND 2-Butanone (MEK) = 0.0198 J All Other VOC's = ND
il 1st		12	<0.00287	<0.00115	<0.00115	<0.00573	<0.00287	<0.00745	<0.00115	<0.0143	2-Butanone (MEK) = 0.0368
Apr		19	0.00698	<0.00119	<0.00119	<0.00595	<0.00297	<0.00773	<0.00119	<0.0149	All Other VOC's = ND 2-Butanone (MEK) = 0.0429
		3	0.0196	<0.00126	<0.00126	<0.00628	<0.00314	<0.00817	<0.00126	<0.0157	All Other VOC's = ND 2-Butanone (MEK) = 0.0584
		6	0.00922	<0.00147	<0.00147	<0.00734	<0.00367	<0.00955	<0.00147	<0.0184	All Other VOC's = ND 2-Butanone (MEK) = 0.05
	GW-4	12	0.0259	<0.00107	<0.00107	0.00908	<0.00268	<0.00696	<0.00107	<0.0134	All Other VOC's = ND 2-Butanone (MEK) = 0.0255 J Acetone = 0.0206 J All Other VOC's = ND
		23	0.0934	<0.00106	<0.00106	<0.00532	<0.00266	<0.00691	<0.00106	<0.0133	2-Butanone (MEK) = 0.0165 J All Other VOC's = ND
		3	0.0179	0.00309	<0.00128	<0.00639	<0.00319	<0.00830	<0.00128	<0.0160	2-Butanone (MEK) = 0.0487 All Other VOC's = ND
	0.475	6	0.164	0.000665 J	<0.00117	<0.00587	<0.00294	<0.00764	<0.00117	<0.0147	2-Butanone (MEK) = 0.0204 J All Other VOC's = ND
	GW-5	12	0.0338	<0.00112	<0.00112	<0.00560	<0.00280	<0.00727	<0.00112	<0.0140	2-Butanone (MEK) = 0.0489 All Other VOC's = ND
		27	0.22	<0.00116	<0.00116	<0.00580	<0.00290	<0.00754	<0.00116	<0.0145	2-Butanone (MEK) = 0.0303 All Other VOC's = ND
	DTSC ealt, Risk-Based Scre ntial / Commercial La	•	0.59 / 22.7	NE	0.33 / 1.4	1,100 / 5,300	5.8 / 25	580 / 2,500	47 / 210	3.3 / 14	2-Butanone (MEK) = NE
	mental Screening Leve ential / Commercial L (Construction Worker	and Uses	0.59 / 2.7 (33)	0.95 / 6.1 (130)	0.33 / 1.4 (33)	1,100 / 5,300 (4,700)	5.9 / 26 (540)	580 / 2,500 (2,400)	47 / 210 (4,100)	3.8 / 17 (400)	2-Butanone (MEK) = 27,000 / 200,000
	"Tier 1 ESL" of all possible pathways a Human Health (HH), Leac Ecologic (Eco), or Odor (habilit y (L),	0.08 (L)	0.085 (L)	0.025 (L)	3.2 (L)	0.43 (L)	2.1 (L)	0.028 (L)	0.033 (L)	2-Butanone (MEK) = 6.1 (L)

See Notes on Next Page

All soil results are in milligrams per Kilogram (mg/Kg)

Notes

1 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, April 2019. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

2 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted <https://www.waterboards.ca.gov/sanfranciscobay/water issues/programs/ESL/new/ESL Summary Tables 24Jan19 Rev1.pdf >

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways for all land uses (residential & commerical). Pathways include leaching (groundwater protection), human health, ecologic ("Terrestrial Habitat"), & volatilization (inhalation).

- L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).
- HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).
- ECO = Indicates the lowest ESL is based on a potential Terrestrial Habitat pathway.
- **O** = Indicates the lowest ESL is based on a **potential "odor nuisance"** (i.e. 100 mg/kg for gasoline).
- **RDL = Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.
- J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.
- ^ = Detection and Quantitation Limits are raised due to sample dilution
- -- = Not Analyzed
- **ND** = Non Detection
- < = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory <u>did not</u> detect the contaminant at the concentration shown).
- **BOLD** = A **bold** concentration indicates the laboratory detected the contaminant at the concentration shown.
- **BOLD** = Orange highlight indicates the analytical result is detected at a concentration that is *above the Commercial land use ESL*.
- **BOLD** = Green highlight indicates the analytical result is detected at a concentration that is *above the Residential land use ESL*.
- **BOLD** = Blue highlight indicates the analytical result is detected at a concentration that is *above the most conservative ESL* (Tier I)

Appendix A

Field Documentation

- 1) Geologic Logs
- 2) Passive Soil Vapor Sample Installation
- 3) Passive Soil Vapor Sample Collection
- 4) Active Soil Vapor Sampling
- 5) Groundwater and Soil Sampling
- 6) Field Methodology

Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

1) Geologic Logs

Weber, Hayes & Associates

	Hydrauli	GIC LOG c Driven be Boring	CLIENT LOCAT LOGGE DRILLE	T: Sant TON: 1 ED BY: ER: Cas	D9 DATE: April 1, 2020 a Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # GW-1 Sheet 1 of 2
Depth (feet) Sample Interval	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth Tithologic b		JSCS ymbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
				SC	Sandy CLAY, dark brown (3/3 10YR), moist to wet, ap medium dense, high plasticity, dominantly clay, 30-40 medium sand, trace silt fines, organics and roots at s odor, no discoloration. - Gradational Contact Clayey SAND, olive (5/3 5Y), moist, appears medium dense, high plasticity, dominantly fine to medium san	9% fine to urface, no dense to
	GW-1-d3 0.7 ppm				clay, trace silts, localized oxidation staining, no odor, oration.	
	GW-1-d7		1.1.1	SM	- Abrupt Contact <u>Silty SAND</u> , pale brown (6/3 10YR), dry, very stiff, do fine to medium sand, 20-30% silt, trace clays, localize staining, no odor, no discoloration.	ominantly ed oxidation
- 9	2.7 ppm				- formation becomes loose from 10-14' bgs.	
- 12 - - 13 - - 14 -	GW-1-d12				- Gradational Contact	
	1.2 ppm				Well Graded SAND w/ Gravels, yellowish red (5/6 5Y damp, appears loose to medium dense, dominantly fir um sand, 20% coarse sand, 10% fine gravels, localize staining, no odor, no discoloration.	ne to medi-
	1.2 ppm				Poorly Graded SAND, pale brown (6/3 10YR), damp appears loose, dominantly fine to medium sand, no of coloration. - terminate boring at 15.5' bgs.	to moist, dor, no dis-
- 20	<u>_</u>			I	AJOB\2t006\FIGURES\LOG	S\GW-1.CNV

WH		GEOLOC Hydrauli Geo-Prob	c D	riven	CLIE LOC LOG DRIL	NT: Sant ATION: 1 GED BY: .LER: Ca	09 DATE: April 1, 2020 a Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # GW-1 Sheet 2 of 2
Depth (feet) Sample Interval	Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
	6	GW-1-d24 0.7 ppm 0.1 ppm				SP SW SP	 Poorly Graded SAND, pale brown (6/3 10YR), damp appears loose, dominantly fine to medium sand, no or coloration. Gradational Contact Well Graded SAND w/ Gravels, yellowish red (5/6 5Y saturated, appears loose to medium dense, dominant medium sand, 20% coarse sand, 10% fine gravels, loudation staining, no odor, no discoloration. Poorly Graded SAND, pale brown (6/3 10YR), wet to appears loose, dominantly fine to medium sand, no or coloration Well Graded SAND w/ Gravels, light yellowish brown saturated, appears loose to medium dense, dominant medium sand, 20% coarse sand, 10% fine gravels, loudation staining, trace mica, no odor, no discoloration. Yell Graded SAND w/ Gravels, light yellowish brown saturated appears loose to medium dense, dominant medium sand, 20% coarse sand, 10% fine gravels, loudation staining, trace mica, no odor, no discoloration. Terminate boring at 28 feet bgs due to clear saturation. 	dor, no dis- (R), wet to ly fine to calized oxi- saturated, dor, no dis- (6/4 10YR) ly fine to
- 39 - - 40 -							AJOB\21006\FIGURES\LOG	S\GW-1.CNV

	GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring						NT: Sant ATION: 1 GED BY: .LER: Ca	09 DATE: April 2, 2020 a Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # GW-3 Sheet 1 of 2
Depth (feet)	Sample Interval	Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
- 0 <u>-</u> - 1 - - 1 -							CL	Sandy CLAY, dark brown (3/3 10YR), wet to saturated medium dense, high plasticity, dominantly clay, 30-40 medium sand, trace silt fines, organics and roots at s odor, no discoloration. - Gradational Contact	% fine to
- 2 - 3 - 4 - 5 - 5			GW-3-d3 0.1 ppm				SC	<u>Clayey SAND</u> , olive (5/3 5Y), wet to saturated, appeadense, high plasticity, dominantly fine to medium sand clay, trace silts, localized oxidation staining, no odor, ation.	d, 30-40%
- 6 -			GW-3-d6					- Gradational Contact	
- 7 - - 8 - - 9 - - 10 -			0.0 ppm				sc	Silty SAND, pale brown (6/3 10YR), damp to moist, we dominantly fine to medium sand, 20-30% silt, trace claized oxidation staining, no odor, no discoloration. - Gradational Contact Clayey SAND, pale brown (6/3 10YR), moist to wet, a medium dense, high plasticity, dominantly fine to med 30-40% clay, trace silts, localized oxidation staining, discoloration.	ays, local- ppears lium sand,
			GW-3-d12 0.2 ppm				SW	 Gradational Contact Well Graded SAND w/ Gravels, yellowish red (5/6 5Y wet, appears medium dense, dominantly fine to mediu 20% coarse sand, 15% fine gravels, localized oxidation no odor, no discoloration. Gradational Contact 	ım sand,
 _ 14 _ _ 15 _							SP	Poorly Graded SAND , pale brown (6/3 10YR), moist the appears loose, dominantly fine to medium sand, no occoloration.	
- 16 - 			0.3 ppm			9.4A	sw	 Gradational Contact Well Graded Gravels w/ Sand, yellowish red (5/8 5Y) 	
- 17 - - 18 - - 19 -			GW-3-d19					appears medium dense, dominantly fine to medium sa coarse sand, 20% fine gravels, localized oxidation sta nificant diversification in color (rangling from bright of black), no odor, no discoloration.	and, 20% aining, sig-
 - 20 -			0.3 ppm	∇				- Gradational Contact	
- 20 -				<u> </u>					

WHA		CLIENT: Sant	09 DATE: April 2, 2020 a Cruz County Department of Public Works	BORING #
	Hydraulic Driven Geo-Probe Boring	LOGGED BY: DRILLER: Ca	412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	GW-3 Sheet 2 of 2
Depth (feet) Sample Interval Sample Analyzed	Sample Identification & Lithologic Pa Field PID Data Calibrated to isobutylene (ppm)	symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
	0.1 ppm	SP	 Poorly Graded SAND w/ Gravels, yellowish red (5/6 rated, appears loose to medium dense, dominantly melocalized fine gravels, localized oxidation staining, no discoloration. Localized coarse rounded sands from 21.5 to 22' bgs Localized coarse rounded sands from 23.5' to 24' bgs 	edium sand, odor, no
- 24			Terminate boring at 24 feet bgs due to clear saturation.	
- 28 - - 29 - - 30 - - 31 - - 30 - - 31 - - 30 - - 30 - - 31 - - 30 - - 30 - - 31 - - 30 - - 30 - - 31 - - 30 - - 31 - - 30 - - 31 - - 30 - - 31 -				
- 32 - 33 - 34 - 34 - 35 				
- 36 - - 37 - - 38 - - 38 - - 39 - 				
- 40			AJOB\2t006\FIGURES\LOG	S\GW-3.CNV

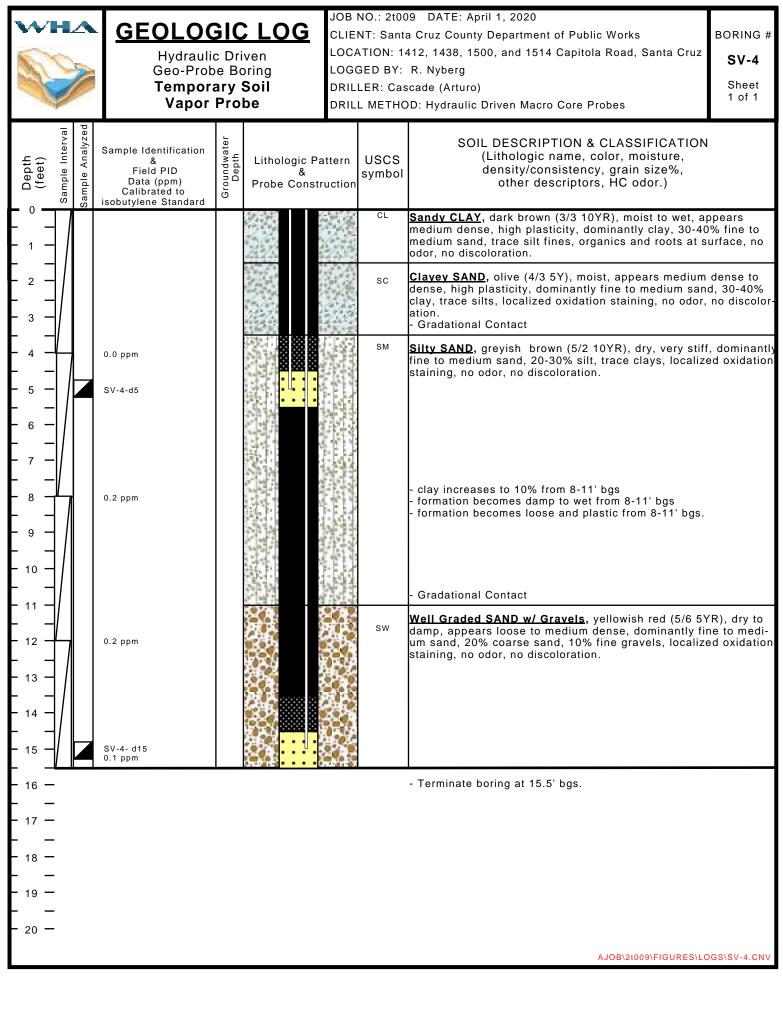
WH2	GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring		CLIENT: San LOCATION: 1 LOGGED BY: DRILLER: Ca	JOB NO.: 2t009 DATE: April 2, 2020 CLIENT: Santa Cruz County Department of Public Works LOCATION: 1412, 1438, 1500, and 1514 Capitola Road, Santa Cruz LOGGED BY: R. Nyberg DRILLER: Cascade (Arturo) DRILL METHOD: Hydraulic Driven Macro Core Probes		
Depth (feet) Sample Interval	Sample Identification & Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth Depth Coundwater	attern USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)		
			SM	Silty SAND, dark brown (3/3 10YR), damp to moist, a medium dense, dominantly fine sand, 30-40% silt fine clay binder, organics and roots at surface, no odor, no ation. - Gradational Contact	s, trace	
	GW-4-d3	 The second second	SC	Clayey SAND , olive (5/3 5Y), damp to moist, appears dense to dense, low plasticity, dominantly fine to med 10-20% clay, 10-15% silts, localized oxidation staining no discoloration. - Gradational Contact	ium sand,	
	0.7 ppm		SM	<u>Silty SAND</u> , pale brown (6/3 10YR), dry, appears mee to stiff, dominantly fine sand, 20-30% silt, trace clay b localized oxidation staining, no odor, no discoloration.	oinder,	
	GW-4-d6			 Formation becomes very stiff from 6.5' to 8' bgs. Formation appears medium dense to loose from 8' to 	13' bas	
- 8 - - 9 - 	2.7 ppm			 Silt content decreases to 10% from 8' to 13' bgs. formation becomes loose from 12-14' bgs. 	15 593.	
				- Silt content decreases to <5% from 12' to 13' bgs.		
- 12 - 	GW-4-d12			- Gradational Contact		
- 13 - 14 			sw	Well Graded SAND w/ Gravels, yellowish red (5/6 5Y damp, appears loose to medium dense, dominantly fir um sand, 20% coarse sand, 10% fine gravels, localize tion staining, no odor, no discoloration.	ne to medi-	
-15 $ -$	1.2 ppm			- Localized increase in gravels from 16.5' to 19' bgs.		
- 17 - - 18 - 						
- 19 - - 20 -	1.2 ppm		SP	Poorly Graded SAND , pale brown (6/3 10YR), damp t appears loose, dominantly fine to medium sand, no oc coloration.		
20				AJOB\2t006\FIGURES\LOG	SIGW-4 CNV	

AJOB\2t006\FIGURES\LOGS\GW-4.CNV

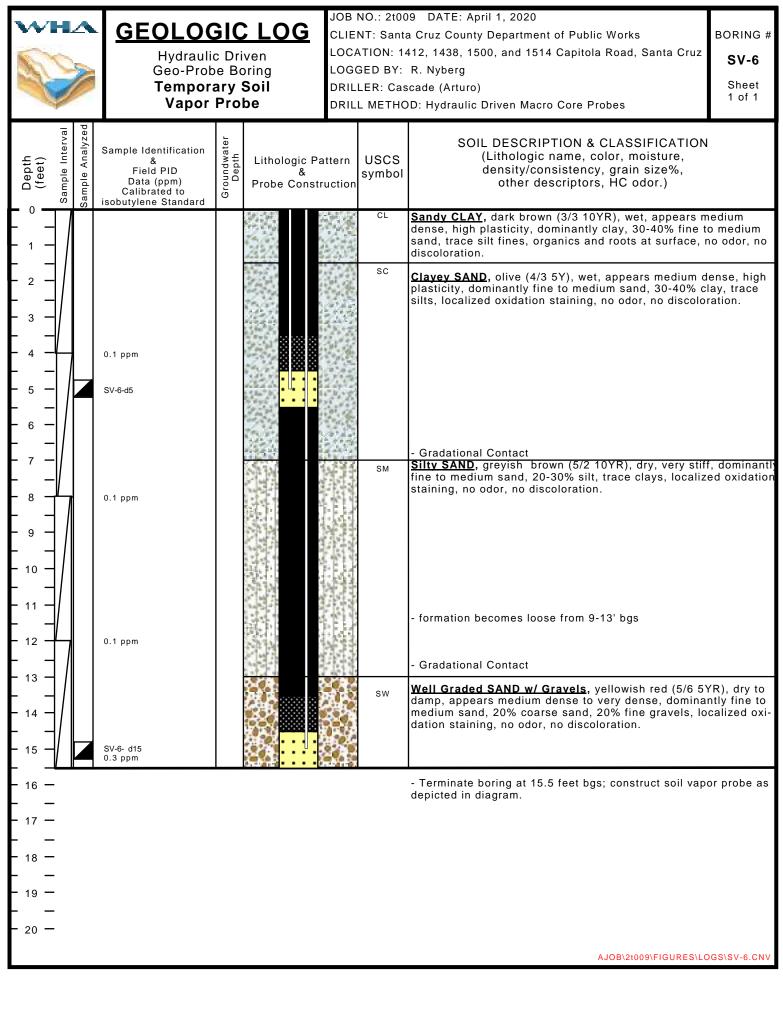
WHA Solution	GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring				NT: Sant ATION: 1 GED BY: .LER: Ca	09 DATE: April 2, 2020 a Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # GW-4 Sheet 2 of 2
Depth (feet) Sample In Sample An	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
20 -21 -21 -22 -22 -23 -23 -24 -25 -25 -26 -27 -27 -27	GW-4-d23 0.7 ppm 0.3 ppm				SW	Poorly Graded SAND, pale brown (6/3 10YR), damp t appears loose, dominantly fine to medium sand, no oc coloration. - Gradational Contact Well Graded SAND, yellowish red (5/6 5YR), damp to appears loose to medium dense, dominantly fine to m 20% coarse sand, trace localized gravels, no odor, no ation. - Localized saturated fine gravels from 25' to 26' bgs. - Abrupt Contact Poorly Graded SAND, pale brown (6/3 10YR), saturai loose, dominantly fine to medium sand, trace mica, no discoloration - Terminate boring at 28 feet bgs due to clear saturation.	dor, no dis- e moist, edium sand discolor- ted, appears
						AJOB\2t006\FIGURES\LOG	S\GW-4.CNV

		DLOGIC LOG draulic Driven o-Probe Boring		CLIE LOC, LOG DRIL	JOB NO.: 2t009 DATE: April 2, 2020 CLIENT: Santa Cruz County Department of Public Works LOCATION: 1412, 1438, 1500, and 1514 Capitola Road, Santa Cruz LOGGED BY: R. Nyberg DRILLER: Cascade (Arturo) DRILL METHOD: Hydraulic Driven Macro Core Probes		
Depth (feet) Sample Interval Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pat	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
	GW-5-d3 0.0 ppm GW-5-d6 0.0 ppm				SC	 Sandy CLAY, dark brown (3/3 10YR), moist to wet, ag um dense, high plasticity, dominantly clay, 30-40% fir sand, trace silt fines, organics and roots at surface, n discoloration. Gradational Contact Clayey SAND, olive (6/3 5Y), moist, appears medium dense, high plasticity, dominantly fine to medium san clay, trace silts, localized oxidation staining, no odor, ation. Gradational Contact Silty SAND, pale brown (6/3 10YR), dry, very stiff, do fine to medium sand, 20-30% silt, trace clays, localized staining, no odor, no discoloration. 	dense to dense to d, 30-40% no discolor-
- 12	GW-5-d12 0.0 ppm 0.1 ppm 0.0 ppm				SP	 formation becomes loose from 12-14' bgs. Gradational Contact Well Graded SAND w/ Gravels, yellowish red (5/6 5Y damp, appears loose to medium dense, dominantly fir um sand, 20% coarse sand, 10% fine gravels, localize staining, no odor, no discoloration. Gradational Contact Poorly Graded SAND, pale brown (6/3 10YR), damp appears loose, dominantly fine to medium sand, no od coloration. 	ne to medi- ed oxidation to moist,


	GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring			CLIE LOC LOG DRIL	NT: Sant ATION: 1 GED BY: .LER: Ca	09 DATE: April 2, 2020 a Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # GW-5 Sheet 2 of 2
05 Depth 06 (feet) Sample Interval Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 ppm GW-5-d27 0.1 ppm				sw	 Poorly Graded SAND, pale brown (6/3 10YR), damp appears loose, dominantly fine to medium sand, no or coloration. Gradational Contact Well Graded SAND w/ Gravels, yellowish red (5/6 5N saturated, appears loose to medium dense, dominant medium sand, 20% coarse sand, 10% fine gravels, lo dation staining, no odor, no discoloration. Poorly Graded SAND, pale brown (6/3 10YR), wet to appears loose, dominantly fine to medium sand, no or coloration Localized fine Gravels from 27' to 28' bgs Formation becomes saturated from 28' to 32' bgs. Formation contains trace mica from 28' to 32' bgs. 	dor, no dis- (R), wet to ly fine to calized oxi- saturated,
- 32	1.2 ppm					- Terminate boring at 32 feet bgs.	

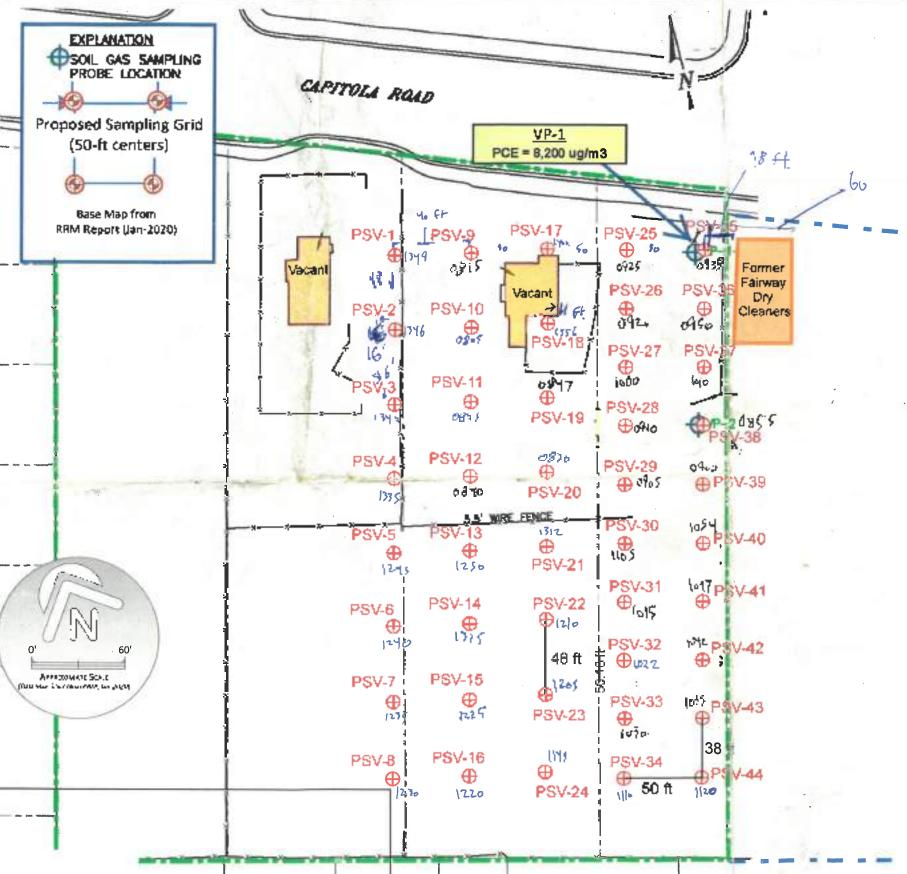

WHA	GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring		CLIE LOC LOG DRIL	NT: Sant ATION: 1 GED BY: LER: Ca	09 DATE: April 2, 2020 ta Cruz County Department of Public Works 412, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg scade (Arturo) DD: Hydraulic Driven Macro Core Probes	BORING # SS-2 Sheet 1 of 1	
Depth (feet) Sample Interval Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
			9:15:12		SP	Silty SAND, dark brown (3/3 10YR), damp to moist, a medium dense, dominantly fine sand, 30-40% silt fine binder, organics and roots at surface, no odor, no dis - Gradational Contact	s, trace clay
	SS-2-d3 0.0 ppm SS-2-d4.5					Clayey SAND , olive (4/3 5Y), damp to moist, appears dense to dense, low plasticity, dominantly fine to med 10-20% clay, 10-15% silts, localized oxidation stainin no discoloration. - Silt content increases to 20-30% from 3.5' to 5' bgs	lium sand,
- 5 - - 6 - - 7 - - 8 - - 8 - 9	0.0 ppm				CL	 <u>Gradational Contact</u> <u>Silty SAND</u>, greyish brown (5/2 10YR), dry, appears of dominantly fine sand, 20-30% silt, trace clay binder, I oxidation staining, no odor, no discoloration. Formation becomes loose from 8'-12' bgs. 	
	SS-2-d12 0.0 ppm					- Gradational Contact <u>Well Graded SAND</u> , brownish yellow (6/6 10YR), dan appears loose to medium dense, dominantly fine to m 20% coarse sand, trace localized gravels, no odor, no ation.	edium sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						- Terminate boring at 12' bgs.	
						AJOB\2t006\FIGURES\LOG	S\SS-2.CNV

WHA	Hydraulic Driven Geo-Probe Boring			CLIE LOC LOG DRIL	DOB NO.: 2t009 DATE: April 2, 2020 CLIENT: Santa Cruz County Department of Public Works LOCATION: 1412, 1438, 1500, and 1514 Capitola Road, Santa Cruz LOGGED BY: R. Nyberg DRILLER: Cascade (Arturo) DRILL METHOD: Hydraulic Driven Macro Core Probes		
Depth (feet) Sample Interval Sample Analyzed	Sample Identification & Field PID Data Calibrated to isobutylene (ppm)	Groundwater Depth	Lithologic Pa	ttern	USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, chemical odor.)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SS-3-d3 0.0 ppm SS-3-d6 0.0 ppm				SC	 Silty SAND, dark brown (3/3 10YR), damp to moist, a medium dense, dominantly fine sand, 30-40% silt fine clay binder, organics and roots at surface, no odor, n ation. Gradational Contact Clayey SAND, olive (4/3 5Y), damp to moist, appears dense to dense, low plasticity, dominantly fine to med 10-20% clay, 10-15% silts, localized oxidation stainin no discoloration. Silt content increases to 20-30% from 4.5' to 6.5' bgs Gradational Contact Silty SAND, greyish brown (5/2 10YR), dry, appears dominantly fine sand, 20-30% silt, trace clay binder, I oxidation staining, no odor, no discoloration. Formation appears medium dense from 9.5' to 11' bg 	very stiff, ocalized
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SS-3-d12 0.0 ppm					- Formation becomes loose from 11-12' bgs. - Terminate broing at 12' bgs.	


Image: Sample Identification reid PD Dest types Solution SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC ador.) Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types Image: Sample Identification reid PD Dest types	WHA S	GEOLOG Hydraulic Geo-Prob Tempora Vapor	: Driven e Boring ary Soil	CLIEN LOCA LOGO DRILI	NT: Santa ATION: 14 GED BY: LER: Cas	9 DATE: April 1, 2020 a Cruz County Department of Public Works H12, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg cade (Arturo) D: Hydraulic Driven Macro Core Probes	BORING # SV-1 Sheet 1 of 1
1 1 2 1 2 1 3 - 3 - 4 - 4 - 5 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 13 - 14 - <	Dep (fee ample	& Field PID Data (ppm) Calibrated to	Lithologic Pa Debth Brobe Constr O			(Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)	
 a dense. high plasticity, dominantly fine to medium sand, 30-40%, clay, trace sits, localized oxidation staining, no odor, no discoloration. b dense. high plasticity, dominantly fine to medium sand, 30-40%, clay, trace sits, localized oxidation staining, no odor, no discoloration. c Gradational Contact St. U.2 ppm 0.2 ppm 0.2 ppm 0.3 ppm 10 11 12 0.3 ppm 13 14 15 SV-1.415 <						Sandy CLAY, dark brown (3/3 10YR), moist to wet, a medium dense, high plasticity, dominantly clay, 30-40 medium sand, trace silt fines, localized oxidation stai odor, no discoloration.	% fine to
5						dense, high plasticity, dominantly fine to medium san clay, trace silts, localized oxidation staining, no odor, ation.	d, 30-40%
 Gradational Contact 0.3 ppm 3.3 ppm 3.4 - 12 - 0.3 ppm 3.5 - 12 - 0.3 ppm 3.6 - 0.3 ppm 3.7 - 0.3 ppm 3.8 - 0.3 ppm 3.9 - 0.3		0.2 ppm			SM	Silty SAND, greyish brown (5/2 10YR), dry, very stiff, fine to medium sand, 10-15% silt, trace clays, localize staining, no odor, no discoloration. - changes to medium dense to loose from 9-14' bgs	
damp, appears loose to medium dense, dominantly fine to medi- um sand, 20% coarse sand, 10% fine gravels, localized oxidation staining, no odor, no discoloration.		0.3 ppm					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						damp, appears loose to medium dense, dominantly fi um sand, 20% coarse sand, 10% fine gravels, localize	ne to medi-
$ \begin{array}{c} - & - \\ - & 17 \\ - & - \\ - & 18 \\ - & - \\ - & 19 \\ - & - & - \\ - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - & - \\ - &$	<u>V</u>			ALCO.F.		- Terminate boring at 15.5' bgs.	
	- — - 17 — - 18 — - 18 — - 19 — - 19 —						

GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring Temporary Soil Vapor Probe		CLIENT: LOCATIO LOGGEE DRILLEF	: Santa ON: 14 D BY: R: Case	9 DATE: April 1, 2020 a Cruz County Department of Public Works 12, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg cade (Arturo) D: Hydraulic Driven Macro Core Probes	BORING # SV-2 Sheet 1 of 1	
Depth (feet) ample In mple An	Sample Identification & Field PID Data (ppm) Calibrated to isobutylene Standard	Debut deput	sv	SCS mbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.5	CL	Poorly Graded SAND, reddish brown (5/4 5YR), dry, loose, dominantly fine to medium sand, no odor, no di "Fill?" Sandy CLAY, dark brown (3/3 10YR), moist, appears dense, high plasticity, dominantly clay, 30-40% fine to sand, trace silt fines, localized oxidation staining, no discoloration. - Gradational Contact	iscoloration. medium o medium
	0.2 ppm SV-2-d5				Sandy SILT, olive (4/3 5Y), damp to moist, appears dense, some plasticity, dominantly silt, 40% fine grain trace clay fines, localized oxidation staining, no odor, ation. - Gradational Contact	ned sand,
	0.1 ppm			ŀ	Silty SAND, greyish brown (5/2 10YR), dry, very stiff, fine to medium sand, 10-15% silt, trace clays, localize staining, no odor, no discoloration. - changes to medium dense to loose from 8-14' bgs - Silt increases to 20-25% from 8-14' bgs.	dominantly ed oxidation
	0.0 ppm					
	SV-2-d15 0.0 ppm				Well Graded SAND w/ Gravels, yellowish red (5/6 5Y damp, appears loose to medium dense, dominantly fin um sand, 20% coarse sand, 10% fine gravels, localize staining, no odor, no discoloration.	ne to medi-
- 16 - 17 - 17 - 18 - 18 - 19 - 20					- Terminate boring at 15.5' bgs.	
					AJOB\2t009\FIGURES\LC	DGS\SV-2.CNV

WHA S	HAA GEOLOGIC LOG Hydraulic Driven Geo-Probe Boring Temporary Soil Vapor Probe		CLIEN LOCA LOGO DRILL	NT: Santa TION: 14 GED BY: _ER: Cas	9 DATE: April 1, 2020 a Cruz County Department of Public Works 112, 1438, 1500, and 1514 Capitola Road, Santa Cruz R. Nyberg cade (Arturo) D: Hydraulic Driven Macro Core Probes	BORING # SV-5 Sheet 1 of 1
Depth (feet) ample In mple An	Sample Identification & Field PID Data (ppm) Calibrated to isobutylene Standard	Lithologic Pa Debth Brobe Constr O		USCS symbol	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)	
				CL	Sandy CLAY , dark brown (3/3 10YR), moist to wet, a medium dense, high plasticity, dominantly clay, 30-40 medium sand, trace silt fines, organics and roots at s odor, no discoloration.	0% fine to
- 2 - - 3 -				SC	<u>Clayey SAND</u> , olive (4/3 5Y), moist, appears medium dense, high plasticity, dominantly fine to medium san clay, trace silts, localized oxidation staining, no odor, oration. - Gradational Contact	d, 30-40%
	0.1 ppm SV-5-d5				Silty SAND, greyish brown (5/2 10YR), dry, very stif ly fine to medium sand, 20-30% silt, trace clays, loca tion staining, no odor, no discoloration.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 ppm				- formation becomes loose from 8-11' bgs	
	0.1 ppm				- Gradational Contact	
					Well Graded SAND w/ Gravels, yellowish red (5/6 5) damp, appears loose to medium dense, dominantly fi um sand, 20% coarse sand, 10% fine gravels, localize around gravels, localized oxidation staining, no odor, ation.	ne to medi- ed wet soils no discolor-
	SV-5- d15 0.1 ppm		83		- Terminate boring at 15.5 feet bgs; construct soil vap depicted in diagram.	or probe as
- 17 — - 17 — - 18 — - 19 — - 19 — - 20 —					AJOB\2t009\FIGURES\LC	068/84-5 044



Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

2) Passive Vapor Sample Installation

Fear Page WIREA, NAYES & ASSOCIATES WHA NUMBER ATTACHMENTS THAT APPLY Notherstay; and Environmental Engineering 120 Versign's Dave, Webserville, CA 20074 Mr Map 541 TZ7. 3640 4" server see 361 Naves same Law second Geologic Japa X Phylo Sharts 1.011 **Dorgrobe Version** 100 Nome. Former Firms 1. Carrys Dete: 2/25/20 6-210-Site Location; Scota los Rad Study + 2 Too9 Field Tosks: X Qrilling V Sompting Other (see below): Weather Conditions: Pustice Soil Vapor Supply Morning roal-No almost - Suns Personnel / Compony On-Site: Line in Hits Rym UHA. TIME: 0715 ontite and discoss suge of work! Arne - dest and install locations for passer bit gas also but 44 Sam Ple - Robert for metallithe Cox Littles diante Beren Ispanta de.) filler ~ 10 quibance. - See attached Fridsheet for additional sample becapter Specific detall. - See photo sharts for additional debit. Note: Handus encomponents present ansister adjusted southin at 1950-28 for sifety. Begin drilling -> Ryun will complete disting at each lowton. I will depthy supplies see 0720 contribute for July depil. Erma) 6915 Contine drilly not deploying person but upon public destinant dealing conditions at PS1/-36. continues -> Passive raper tobe installation continues. Valley 1220 - Brank for Inch 144 -Contine disting Single deployment Hom (UIA) - Ket phys on-site - 4 Somet absent č. Simply Paces project Projects 1215 -Rat 47-15 and support diplyment Contine dillin simples deployed, will return in 7 days to return Αſ Simples, Sample bushins maked Pin Elass-Paul 1420 and dentilize. Stil Mint 2/25/20 Ultre

Signature of Field Person of A Bote

-	An tore 504 Marcer Sompley, Naklahave Kapitala itgan									
arişiş ü	hileFetton Date	renations Time	fielor de Discoleration f	Geology	Other One metions					
PSV-1	2/25	1349	None	clayey Send	Boning near road/arens driving (En 0-2) (Drap 2-2)					
PSV-2		1346	cont.	Clary Sud	Burry acr marbure,					
PSV-3		1341	pank	Heady and Anto Asphilis & Insends D-015' chysy soul as-3'	Buis is replace living an accel					
PSV-4		1335	Asat	Aspbult + baserood 0-0.5' clayer Sund 0.5-2'	Bring is applied detay					
PSV-5		1245	fre ne	hand clay ulsoud (light broom)	-day 0-2', very stiff, lland to drill - damp 2'-2'					
PSV-6		1240	None	$\mathbf{D}_{\mathrm{eff}} = \mathbf{D}_{\mathrm{eff}}$	μ					
PSV-7		12.65	Name	clonery and (deck hear) (0-13 - souly checkmonistronge) (1-17)	- day (0-1) - day/most (1-3)					
PSV-8		1230	New.	h.	50					
PSV-9		ogis	none	Clapsy SAND	worthoust at 31 byp. Compacted Surface					
PSV-10	+	0505	None	Klayey Stavo	-m - 11					

,C³

_	Petalar kak Vayo' Sompling Metalanad Capitala base									
ample da	IndaHetton Date	installation Table	Oxion et Déscalamenique?	Geology	Other Recentrations					
PSV-11	2/25	0825	Viore,	-imprised consultation of -3'	compacilied drivening grant and rand. Lamoust at 2.11 2'673					
PSV-12		0840	hear.	dayley SAND (de. K brown)	moist from subject - 3'					
PSV-13		1250	tan	-rlongsy served duck brown) (0-r) - servey educy (light energy) (1-3)	- dry to damp					
°SV-14		(315	home	8	U. C.					
PSV-15		1225	None	-chappy SPAND (dank Grown)	- daughanist from 21-35 - signs all gopphens.					
PSV-16		1220	home	4	-damp Summer 1.5-21 by					
°SV-17		14.2	NINK	sudy chy (dup home) (0-3)	-dimp to realist from (0,5'-5')					
2SV-18		1356	Anne	Sud, ely (det have) (0-3)	- drop to most from (0.5-3)					
SV-19		09.47	Nom.	changey SAND	modist from our form to 3'					
SV-20	V	0830	None	Serving CLAY from 12 3' Logo (hight songer) 30,445 & -1' byc songer)	mont from malface to 3' - Do p					

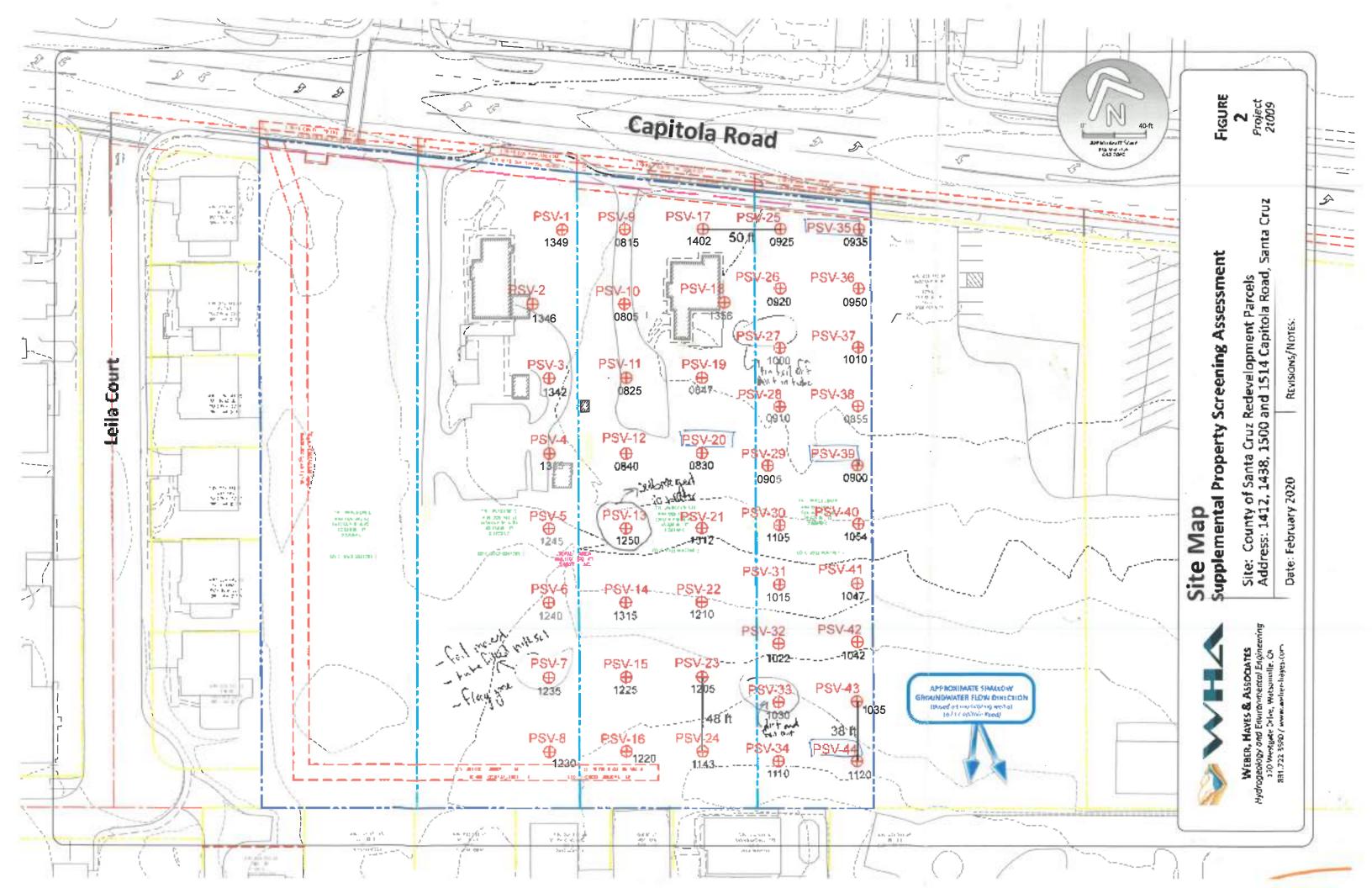
	Packer Scill Packer Scillent Copilale Read									
	verafladee Oetr	nega sing term Minas	Odar or Olicolanades?	Geology	Other Steenwhore					
PSV-21	2/25	1312	Ng AL		н Т					
PSV-22 '		1210	tone	(kyny SADO (dalk how)	- webfrom 2.5-5 - dry flow O-1 bys - gapter slows					
PSV-23		1205	NONE	n	- dang/day 1-2' - hang/day 1-2' - hapter times					
PSV-24		1143	hove	υ.	11 Advert adve					
PSV-25		0915	P.1	Clargery SALLD (durk down) - Or 1' - Sending Charl (1184) arange brown) - by 1'-2	To Separated (muddy under coming up with the large dismon of 1' Trolong to moust. It some very lossed concerned time getter tides withink o'-1' logal					
PSV-26		0710	lang han	Clarly Savordek 6 -1.5' - Schul Charleman (-1.5-y	The Week's Difference of the second sec					
PSV-27		(*05	****	-Chuyen Ghao (Aukama) (A O uni	-damp from surface = 3'					
PSV-28		Otia	NONE	Sandy CLAY (your shi his any) (1-31) - surthing device from as (1-0-1)	maist from surface to N.					
PSV-29		Mos	here	ų	(
PSV-30	L	1105	Manu .	"Chancey Shallo (dark boom)	-damp - 1'-3' -day (com d-1)					

_	Possive size funedag rectations Copitale taxa								
Carniglie (¢	hniailettan Date	imai n so Tina	Celor & Discoloration?	Geology	Other Disarvatiess				
PSV-31	2/25	1615	The As	dork brown Silly SAND whiley (loose, gopbur signe)	-goption signs - met/movet 21-3				
PSV-32		106.2	hans,	dorth how they any state D	$+$ module $0 = 3^{1}$				
PSV-33		1052	hone	W.	p				
PSV-34		1110		'n	η				
PSV-35		0135	n ist	harder soil at su can (0-1.51) Lodorb brown clavery Start chan (anong brown) (1.7-31)	-westdony an 21-31 ago -dep				
PSV-36		0950	None	Mostly lorge to small rounded gravels from					
PSV-37		1016	NONE	useme small rounded public - SAND infoling	- damp from 2'-3				
PSV-38		0155	None	- Loose Tight has been Silling Shalp (may dealed)	- Vicing 20050. - markly from 1-3				
PSV-39		0900	Mone,	-come light for brinn silvestill Laperi - competer scar 11-31	-moviet from mothers - 3 - Dap				
PSV-40	¥	1054	PHL	- middy lack from daying class	-inch Son allen - 3'				

PossAver SciP Yaper Langating Hyllestaret Dipertoka Boad								
ngla ú ¹	Conte Finition Installance Conte Time		0.407 = 0.66 of craftian 7		COver Discovations			
PSV-41	4/25	1047	Manu	Clarry SAND dark down 0-3	methodate subject to 3' by			
2SV-42		1042	hove	u.	(c			
2SV-43		(055	Mark.	very muddy (not-saturated at sw face) -dark been cinjey starp	-sub-under of free and			
'SV-44	*	1120	whe	n	и - Ду			

Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

3) Passive Vapor Sample Collection



Page ____

Project/Cherry County of Santha Cruz	Project 4: 2 FOOP
Site Location Was 1098 1500 + 1514 Capitum R-1	fiste: 3 - 3 - 20
field unis Possive Sail Vepo- Sample Collection	Weather:
Pensannel / Company On-Site: 20 (WHA)	Sunny
Attachments: Site Map Data Sheets Geuoge Logs Photos	CDC Chargeable Materia6

Time:	Notes:
• • ~ •	
(e. 6)	
	- tom (ash wan they are an)
745	Arrived onsite with Harrison Proping Persine Soil Vope Sough callection. First sample une pland a week app at 0805
	sample that place a week app at 0205
6000	- Beensone Severing at 0205 at 15V-10 Device alexand Little (0)
	- Beginning sempling at 0805 at PSV-10. Humiss- planning to take all soon.
101	- PSU-27 has some dirt met and the feel was mored (goptions? dogs?)
f03 ý	Les Same Hiving happened a PSV-33.
hto	- Lurch Brack Working on COU and organizing shough lage
itas	
2-35	- starting up again (150-24). Working on southwest normer of site.
1250	- Starking up again (RSV-24). Working on southmest corner of site. - PSV-70 had fail displaced and soil in methol tube. - PSV-13 is submerged in water (no significant odors of liquid so hopefully it is water). Sample was completely subgrouged.
-30.	have been it is the here and the count the collinger of
0.00	interned and a summer as sumpling they wanter out sumplied from
1910	- Emission up mobilization. Checking over Gold notes and Core
	- Finishing up mobilitization. Chucking over Gield holes and COCC. Reviewing beacon chucklist for sample delivery.
12.2	
430.	- Martizing to Fed Ex to drap off sampler.
C 22 - 22	25 전 25 년 27 년 21
• •	************************************
01.5	것 것 있는 것 것 것 것 것 것 것 2000 Deale 것 없으면 ㅋㅋㅋㅋㅋㅋㅋ
•	

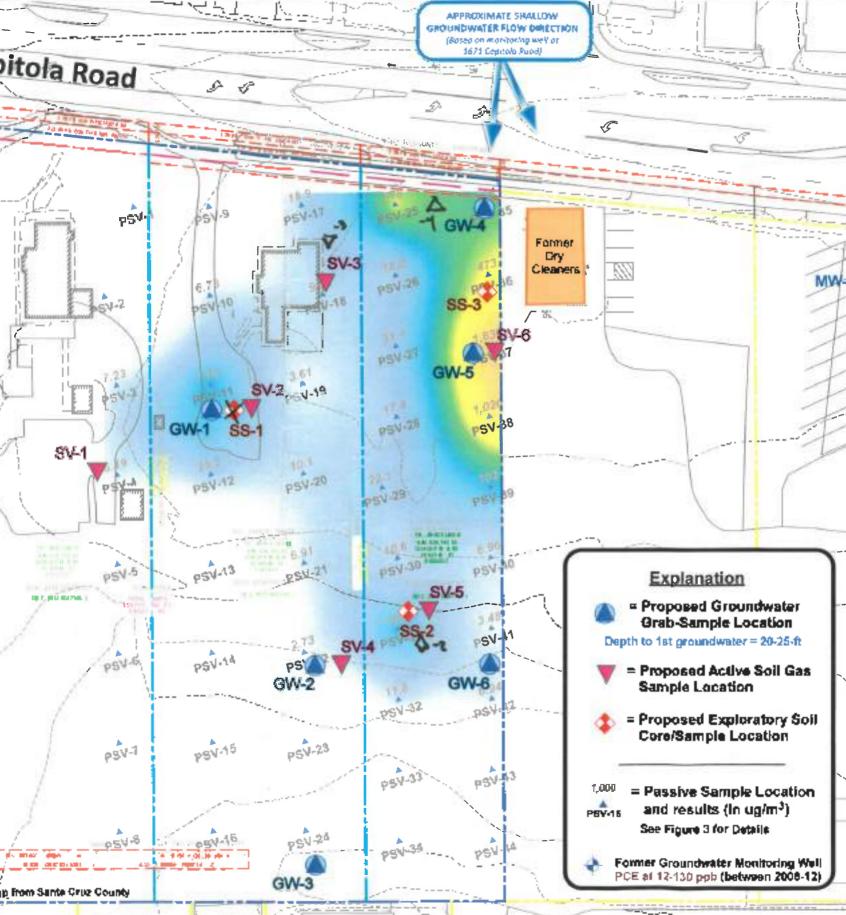
S greet re of Field Personnel & Date

Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

4) Active Vapor Sampling

Weber, Hayes & Associates

WEBER, HATES & ASSOCIATES Nystogeology and Declarometry: Engineering 120 Warrgane Direc, Vancometry, CA 19070 API 122 3407 A <u>www.eedor-heyse.com</u>


lest Page____ Cele Seren There are the second Charges bir bird mehr

100 Nome: 722 & Cupton - Farry Cleares	Date: 4/1/20
Site Location 17th Albenne i capitale - Sinte Cours	Study # 2 TOOGL
Finid Tasks- 🔣 Drilling 🔀 Sampling 🔄 Other (see below):	Weather Conditions.
Soll Sil upper and Soundarder Simplay	Carl - For clads - Morning
Persannel/Compony Om-Site: Haring Hucks (144) Ryin Nyboy (14	A) Casuado Dellay
TIME:	
othes Arrive on-site and meet - Ryon Nyber (244). Proper	constant to complete
seil soil uper and grandater sampling.	-01
obor Cascude Drilling (Artura is curles) curve another Disc	33 doiting substrations
Simply and finding.	
- Rever site hatth and suffity this and a	Ally low link
Ensude bryins preparties for soil unper installs	
- Durf depth nosted vapor probes set at 15' !	
- See Ryon Nybrys field cheats for drilling details	
will complete soit & G.a. Simpling.	/ · · /
Soil Vapor suppose will be eastered Z hours to	Henry constitution time.
Calcula begins deriling	1.0
0910 - Probe asp fet at 0910 -+ 50-2.	
Mob. to IV-1 and prepare to drill.	
- probes set it ogics	
Mob to server and proper to doint.	
- Proper set at 10%0	
Mod. to 54-5 and preprie to daily	
- Probes Set at 1520	
Mob. to SV-6 and proper to dist.	
110 Brain purge at 54-2. Purge complete. See attached	hill where Geld shats
for additional detail. See photo sheets for addition	1 ded:1
- 5- apt cullected. @ 51-2- 15	in the marks
Begin Purge at 50-2-d5. Purge complete.	
- Simple collected @ sv-2 - ds. Low-the constant.	11 12 12
The second and a second s	Man Me 4/1/20
	Signature Field Parks all Date

-Triffeedogwist C P UPUS - 20M - Starows Fally H $\mu_{\rm PV}$

Tea test 2/2 WERER, HATES & ASSOCIATES WHA HONCA'S ANY ADMINISTRAT APPLA Hydrogeology and Environmental Engineering 120 Winsgate Drive, Watercowey, CA. 99078 Skyhiles \$31,737,2560 /r white weather-beens care Calls Mayel v Geologie Logi K Photo threes rom-Фодний макели 106 Nome: 17th : Constant -Former Frink clears Date. 4/1/20 Sludy #: 28096 Site Locotion-175 Aren i. 6-plots Read Senter Gue Freld Tasks 🔍 Orilliop Sampling Other (see below): Weather Conditions: Soil inper sumpling No alast - Lorg Aersonnel / Campany On-Site Hamilton Huts (-61) Nobio Lisch 12,364 TIME: 12.00 Drillers brank for lunch to 56-1-d15 Male ·nd rom lete porpart f₽. Puse - Sample collected. Part Holen writes on Sile, Ditues duiling progress and these field - mak Byin pupe of SU-1-dS - Pupe complete - Sample Collected 13-5 1305 - Pat Hoban depicts. Drillas mob. to SU-3 and degin prote installation Mab. to SU-Falls and bein - puge samplets. Purgt - fragle collected Make to 56-4-ds and here proze - complete -Semply Collected. Mot. to 54-5-015 that bain game -> page complete 14+1 -Sumple collected Begin page of SU-5-d5 - page couplete. - Simple allerted. Note: Rep - A allerted have and begin proje -> 5V-6-d15 Mob. to Co-plete collected. Note: proper set @ su-5 : 1150 1528 - Sample Pegin puse of SV-6-ds -> puge complete - Ion the custilions, Sample collecter. Mode to 50-2-dis and begin purge tomptile -Single collected. Ryon Nybery depicts. 632 Bigin Jurge of 5U-3-ds -> purge complete. - knople collected. Park conspect and proper to June. Dister denot will not will come and 1700 unger S-plet diap noter chain of custody 1730 Samples delivered to cause Signature of Field Personnel & Dou

JC Glassoy Press PDPUB - 2014 - Standard Field Kuller

ampiaLD	Formar Fairway Clean	Centsor No: 290	🕫 Nanifold No	A # 1, 2020	
emplem Harne:	Кетеол Ни	iAs	Recented by	с нн	
DCs by EPA Method TO-15 or D-14 PH gas by EPA Method TO-15 or D-14	khisiki :	• Analysis Information •15: Maphbolone by EPA Medice TQ-15 •1946 (PA by TQ-15		Sampia Collection Me 1.4-C Surtime Camb	
abi BC Labe			Trinépertation:	Cowier	
	Semi-Permanent	Vapor Probe Construction De	alis		
fulue:	P	robe Tip Set Oapth / Sample Dept	h; <u>5. o</u>	_	
	A:	5.5	Volumente Conventions	(28,311 mi /ft ²);	
	B:	б. р Тub ng реробл	1.71-moth until bahance = 2.4.	mLTL	
C C	C:	3.5 ⁷	3/15-moh (Id) biloing = 5.	4 mLm	
6	очности полости D:	/ Annulus	Sand (10 or 10(12) & Gr	anular Benlonko (33.8%	ροκαίτγι
î (ko (kû),	E.	1	S-auch Boring -	- 3,361 mLH	
	F' F'	2.25	2.25-moh borng	204 mLT	
	G. G.	3/16"	2 75-inch borng r	- 385 muñ	
			innular Delits Spece Volume 2451 : Annue Volume Constalie (6.20	.t
			Tubing Dead Spece Velome	4.5.5	1
			Die Tubers Volume Terramon	1 1 1 1 1 1 1 1	l l
	Syste	Tetal Deed Space m Purge Information	(de Tobey Volume Convenient Volume (Tobing + Annulys)	0-15	
	ased on DTSC Guidance for vapor pr		Volumen	0-15	1
Tóta	ased on DTSC Guidance for view per pe	m Purge Information ata remptes = <u>3</u> System (dead space")	Volumen	\$71.2 -	1
Tota	ased on DTSC Guidanca for viscor pr al Sila \$posific Purge Volume * Tala Sampling Bi	m Purge Information Ite emples = <u>3</u> System (dead space") I Deed Space Volume is it of System Volumes Ind Leak Check Information	Yokulas (Tutung + Annuter) Volumes .=]7]]}.6	571.2 ~	1
Tóta	ased on DTSC Guidanca for views pro il Sile \$pecific Purge Volume * Tale Sampling Bi Marifold Sna	m Purge Information ate remptes = <u>3</u> System (dead space") el Deed Space Volume & # of System Volumes ind Leak Check Information el network duration: <u>1 minute</u>	Volumes .=J.7.J.6. →∫ ManNolo Lewkery – Yes	571.2 ~	1
Teta Imme Cenkster: Genetar Volume: <u>1.4-L</u> Laek Cleach Forter Compo	esed on DTSC Guidance for view per pr I She \$pecific Purge Volume * Told Sampling en 	m Purge Information also examples = <u>3</u> System (dead space") al Dead Space Volume is if of System Volumes ind Leak Check Information (-In steek statements <u>1 minute</u>) (leak tracer compound applied to shroud ance	Volumes ;=J7/J.6 →J ManNolo Leukary – Yex pauliting Autimosystem)	571.2 ~	1 <u> Tron Case Stor</u> , ISampa Dov R inZid roangjar wacuum
Teta Imma Canketer: Ganeter Volume: <u>1.4-L</u> Lwek Cleeck Toeter Compo gin Semple Collection:	esed on DTSC Guisance for view per pro- il Sile \$pecific Purge Volume * Tale Sampling Bi Marifold Sne Sunc: IPA	m Purge Information ate Hempine = <u>3</u> System (dead space") # Dead Space Volume is # of System Volumes ind Leak Check Information # In others duration: <u>1 minute</u> Heak tracer compound applied to shroud once Shroud leak tracer concontration (ppin)	Volumes =Y / S . 6 → [ManNolo Lewkery Yes: pauliting entire system] Vapor Probe Vacuum ("Hg)	5 77.2 ~ = 8.5 °Hg λ =	T <u>con Case</u> Story [Samp a Flow R in Et al coangept vac dum.
Teta umma Cankator: Canetar Volume: <u>1.4-L</u> Luck Clerck Torter Compo pin Sempie Collection: Canale: Sample Raje:	esed on DTSC Guisance for view per pro- il Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sne sunc: IPA <u>Time Elapsed Time</u> 12.5.7 p	m Purge Information ate examples = <u>3</u> System (dead space") el Dead Space Volume e # of System Volumes ind Leak Check Information el in etweet duration: <u>1 minute</u> thesk texter compound applied to shroud once Shroud leak texter concontration (opin)	Volumes .= for the second s	5 77.2 ~ = 8.5 °Hg λ = ' ⁴⁰ Center Vacuum (¹⁴) 36	Tron Case Stork Samp = Dork Samp = Dork
Teta Imma Canketer: Ganetar Volume: <u>1.4-L</u> Lask Cleeck Foreer Compo gis Sample Collection:	esed on DTSC Guisance for viscor pro I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec sunc: IPA <u>Time Elapsed Time</u> 12.5.7 p 52.5.9 2	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume e el of System Volumes ind Leak Check Information el·lo eteck duration: <u>1 minute</u> thesk tester compound applied to shraud ance Shroud leak tester concontration (opin) 	Volumes .=	5 77.2 ~ = 6.5 °Hg Λ= ¹ ¹⁴⁰ Constant Vaccium (¹⁴) 3 α 2.0	1 <u>TourCase Star</u> (Samp & Dav F initial Isangter yi
Teta mina Gankatar: Ganetar Volume: <u>1.4-L</u> Leék Clieck Forter Compo de Semple Collection: Canale: Sample Raie:	esed on DTSC Guisance for view per pro- il Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sne sunc: IPA <u>Nime Elapsed Time</u> 12.5.7 p 52.5.9 2	m Purge Information ate examples = <u>3</u> System (dead space") el Dead Space Volume e # of System Volumes ind Leak Check Information el in etweet duration: <u>1 minute</u> thesk texter compound applied to shroud once Shroud leak texter concontration (opin)	Volumes .= for the second s	5 77.2 ~ = 8.5 °Hg λ = ' ⁴⁰ Center Vacuum (¹⁴) 36	1 <u>TourCano Star</u> (Sampa Dav R initial Issengtor pl
Teta minge Cankster: Ganerar Volume: <u>1.4-L</u> Laak Clenck I over Comec = Sample Collection: Canalar Sample Rate: 180 mL/mai	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 <u>Toor Case Star</u> (Samp a Dawf initial comptant ya watuum,
Teta mma Cankatar: Genetar Volume: <u>1.4-L</u> Leek Cleeck Lower Comec # Sample Collection: Canalas Sample Raio: 180 mL/m/n	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tour Case 3 tour (Samp a Row 5 Samp a Row 5 Samp a Row 5 Vacuum.
Teta mma Canketar: Ganesar Volume: <u>1.4-L</u> Leak Cleeck Towar Comec Sample Collection: Canales Sample Rate: 180 mL/m/n	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tour Case 3 tour (Samp a Row 5 Samp a Row 5 Samp a Row 5 Vacuum.
Teta mma Cankstar: Ganatar Volume: <u>1.4-L</u> Luak Clutch I over Compo 5 Sample Collection: Canalar Sample Raio: 180 mL/man	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tour Case 3 tour (Samp a Row 5 Samp a Row 5 Samp a Row 5 Vacuum.
Teta mma Cankstar: Ganatar Volume: <u>1.4-L</u> Luak Clutch I over Compo 5 Sample Collection: Canalar Sample Raio: 180 mL/man	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tour Case 3 tour (Samp a Row 5 Samp a Row 5 Samp a Row 5 Vacuum.
Teta minge Genifster: Generar Volume: <u>1.4-L</u> Laek Clerck I over Compo 5 Sample Collection: Canaly: Sample Rate: 180 mL/min	Ased on DTSC Guisance for viscor pro- I Ske \$pecific Purge Volume * Tale Sampling Bi Manifold Sec Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tour Case 3 tour (Samp a Row 5 Samp a Row 5 Samp a Row 5 Vacuum.
Teta Imma Cankatar: Ganetar Volume: <u>1.4-L</u> Luck Clerck Forcer Compo gis Sample Collection: Canalar Sample Rate: 180 mL/mm	Ased on DTSC Guisance for viscor pro- Il Ske \$pesific Purge Volume * Tole Sampling Bi Manifold Sne Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes = Volumes = Volumes = Volumes ManNolo Leakary – Yex Couldring aution system Vapor Probe Vacuum ("Hg) Z_(Z_1 	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	initial compton Jampa Flow F vacuum J 3 o "Hg
Teta umme Cankstor: Canetar Volume: <u>1.4-L</u> Lask Clerck Tower Compo gin Sample Collection: Canales Sample Rate: 180 mL/min	Ased on DTSC Guisance for viscor pro- Il Ske \$pesific Purge Volume * Tole Sampling Bi Manifold Sne Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information also examples = <u>3</u> System (dead space") el Dead Space Volume is 4 of System Volumes ind Leak Check Information (d) steek duration: <u>1 minute</u> thesk tweet compound appled to shroud once Shroud leak insperior conconstration (opin) 	Volumes =Y JJ. 6 → [ManKolo Leekary Yes coultring Arcine system] Vapor Probe Vacuum ("Hg) ∠ (∠)	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Trom Case Start ISampa Dow R vat dum. 3 o "Hg fine I Carlister vat cum:
Teta umma Cankator: Canetar Volume: <u>1.4-L</u> Lask Cleeck Lover Compo gis Sample Collection: Canalar Sample Rate: 180 mL/mm	Ased on DTSC Guisance for viscor pro- Il Ske \$pesific Purge Volume * Tole Sampling Bi Manifold Sne Sunc: IPA Time Elapsed Time 12.5.7.0 52.5.9.2 13.0.1.4.	m Purge Information die eningen = <u>3</u> System (dead space*) el Dead Space Volume is if of System Volumes ind Leak Check Information (d) eleech duration: <u>1 minute</u> thesh texase compound applied to straud ence Straud leak tracer conconsistion (opin) 	Volumes =Y JJ. 6 → [ManKolo Leekary Yes coultring Arcine system] Vapor Probe Vacuum ("Hg) ∠ (∠)	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	initial isonglar Jampa David initial isonglar vacuum. 3 o "Hg
Tea umma Canketer: Canatar Volume: <u>1.4-L</u> Luak Clutch I retter Compo 5: Semple Collection: Canata: Sample Rate: 180 mL/mm PID Caléntion:	All She Specific Purge Volume * Tole Sampling en Mariloid Sec Sunc: IPA	m Purge Information die emiges = <u>3</u> System (dead space*) el Dead Space Volume is it of System Volumes ind Leak Check Information (d) eleech duration: <u>1 minute</u> thesh texase compound applied to straud ence Straud leak tracer conconsistion (opin) 	Volumes =Y JJ. 6 → [ManKolo Leekary Yes coultring Arcine system] Vapor Probe Vacuum ("Hg) ∠ (∠)	S 77.2 ~ = 8.5 •Hg λ = • ⁴⁴ 0 Center Vacuum (¹⁴) 3 Δ 2.0 (0	1 Tron Carol Start ISampa Dow R vacuum 3 o "Hg fine I Caribler vacuum:

			Sampl	le Location Information				C
Project NamelNo.:	the design of the		Fairway Clea	ners - 27009b	-	Data:	April 1, 2020	
	sv-1-115			Contrater No:	5190	hindigi No:	1109 1674	
Samplere Name:			Herrison Bu	cte		Recorded by	HH	
			Sampl	e Analysia Information				
Requested Analyses (circle							Sample Collection Media	5;
TPH-gas by EPA Method TO-TS TPH-gas by EPA Method TO				15. Naphitaliane by EPA Method TO-I	3		1.4-L Summe Canlete	٢
	0.16		24 r.5 ch volue D	-1946; PA by TD-15	_			
Lab: BC Labe			-		-	Transportation:	Goerder	_
		Semi-f	Permanent	Vapor Probe Construction	on Det	alls		
rusas. L			Р	robe Tip Set Depth / Sample	Depth	15.0	e .	
: П			A	15.5		Volumento Conversional	28,317 mL.9(³);	
ΓI 2777 277			B.	18.0	Tubing	1/8-inch (la) tubing = 2.4		
					Jeyer DAL			
	همه با ا		C:	13.5	\leq	3/16-arch (id) firting = 5 4		
		Granes: Barace as	D:	- 1 ¹	umakas.	Sand (#G or #2/12) & Gra	rular Bentonev (33.3% (o	meth(:
· · ###	142		E-	1		ð-inch boring -		
		Ease ()	E .					
190(#\$B(0) 00(40)	00001		F:	1,2,5		2 20-moh bonng t	264 mL/t	
	🗄 🛉 🖾	Кола рекла Тес	G:	3/16		2 75-inch boring =	365 m L/h	
r				/		(tuber Diesed Space Volume: ©) • Annous Volume Conversion)	A 7 6	
						ability Devel Specie Volume:	9	
						9 - Tuberg Volume Communice)	17,2 40	
				Total Deed	Space V	oluone (Tobing + Annular)	625.2 41	
Required Bystem Volume to		s Specific Pur	ance ky vepor pr ge Volume = Tob	ern Purge Information Ne complex - <u>3</u> System ("dead a 21 Dead Space Veterne in 6 of System V 22 d L colo Of colo but a	olumas =		= 9.₩ тнg ∆÷	(Tom Data Scene) (Tomple Row Rea
Summa Canister:		i	sampling a	nd Leak Check Informati	юп			
Cefeiter Volume	14-L		ManFail St.	A-n streck durgeoon; 1 Murgudie		Manifuli Lawlung - Yes	6	
1		100.0				-	(<u>Ho</u>)	
Lask Check Try;	ter compound:	IPA		Osek inter compound applied to shree	ud encept	hwalling antite system)		initial canimar
Regin Sample Collection:	2	Terrey	Ebpsed Time	Shroud leak bacar concentration ((ppin)	Vapor Probe Vacuum (*Hg)	Cantaler Vacuum ("Hpl	vàduum
Cenque: Sample Rate:	1	1230	0	14 M		61	3	³₀ "Hg
180 mL/min	'	12.95	2	50-100		6	22	
		[244	7	50-100		41	15	
PID Calbration		1236		144-150		41	19	
		1239	ð	5-200		- 21	5	-
		11						
		11						
		1						
		1						
		-	1					
	1		1					Shel Lanster
			VA III					vaosum.
			li cile					5
Poet-Somple P1D Rending. 7	Bioc-		1.421.52					"Hg
	1		verge:			1		
Comments: PXD	dating	#3-	4/1/20					
TVOL	reading :	0.4	1Pm					

1

11

		Sample	e Location Information	ń			
Project RemeMic.:	Former Fe	way Clear	Neva - 270095		Oute:	April 1, 2020	
Sample LO.: Strike of S			Genteter No	· 517	3 Hanticial No	x 1125 1278	4
Samplers Nerne:		Harrison Har	*#		Recorded by	y: HH	
Pequested Analyses (sincle all that apply VOCs by EPA Wathod TD-15 or TO-14; M4 TPH-946 by EPA Mathod TO-15	ATEX & IBA by E	A Method TO-	9 Analysia Information 15. Nachinalane by EPA Method T 1946: IPA by TO-15			Sample Collection Maple 7.4-L Symme Constit	
Lab: BC Laby					Tinin sportation:	Counter	
	Gami Da		den - De la Carata				
1	36000-F 4		Appor Probe Construct		<u> </u>		
TURHS		Pr	obe Tip Set Depth / Sam	pla D epth :	••0	÷.	
		A:	5.5		Volumetric Conversions	(25.317 mL/h ²);	
Photo	4	B-	8.0	Tubing Jacobing	1 \$-eich (id) tubing = 2 4	mLrtt	
	name lenges	¢.	3.5	\leq	$2^{i}18$ -instr (id) (using = 0.	4 mLtt	
	Constant and and a	D:	/	Aneruka:	Serio (#3 or #2/12) & Sr	erviar Berranila (38.8% p	aranty)
		E;	1		8-nch boring	= 0.341 mLT	
	6440()	F:	2.25		25-nch borng	- 264 mL/t.>	
	Paras senan na	G	>/16		2.76-inch boring -	- 395 mL/t	
				à,n	nder Deed Sparse Volume	S 88 -1	
				-	•) • Anote Volume Community (bing Dead Space Volume)		
					9 - Labling Volume Domination		
			Total D	ead Spece V	oluma (Tubing - Annutar)	571.2 +1	
		Syste	m Purge Information				
Required Symborn Volume to Puryed Leaved	Inn DTSC Godere	e for vapor pro	be samples = <u>3</u> System ("des	ad space") Vo	olumas		
Total BK	la Specific Purge	Volume - Tolo	Dest Space Volume & P of Syste	u Valumus -	17125 - 41	= 8.5 Hg A=	Environ Survey
	Sa	moling ar	d Leak Check Inform	ation			
Summa Canlater:							
Canetar Volume: 1.4-L	_	ManRold Shul	In these duration. 1 wimute		Mandold Lealeng: Yas	100	
Leak Check Tracer Compound.	. IPA		leak bacar sampauna eppkea la «	аный нисеру	wang onina system)	\subseteq	
Singin Sample Collection.	Time E	Jacsed Time	Shroud Mek trecer concentration		Veutr Prote Vectors		e Bai constar Viccum
Canalar Sampia Raia:	1157			ar (brind)	(°Hg) 2	Caneler Vacuum (*4g)	3₀ "Hg
180 mL/min	1154	2	50-140		4	0020	1 Ing
PID Cambraven	1201	4	50-200		<u> </u>	12	
	1205	8	50-150		\$	9 H	1
	11	-					1
	11						-
	11						
							1.
		11.11					filmi canadar kocuum:
		14.					100
Post-Sample PIU Reading TVOCs						9	14 "Hg
	#2 - 4	/ rerage:					
Comments: [1] datales		11/20					

A-X05.4, Forms A. 19HA home-ADCa.07-FLF: D. Forms/Vapor Field_Bartina - Samma

0.0

P.P.n

TOTAL VOL:

Low - flow continues.

-

		Sample Location Infor	nation			
Project Name/No.:	Former Fai	way Cleaners - 270095		Date:	April 1, 2020	
Bemple I.D.: 5V -2 - 6	45	Çar	Hatar No: 6124	Mentioid No	166	
Samplers Name.		Harrison Hucks		Recorded by	s HH	
Requested Analyses (secils all th VOCL by EPA Method 10-15 or D TPH-gas by EPA Method TO-15	0-14: M-STEX & TBA by EP	Sample Analysis Inform A Method TC-16: Naphthalene by EPA J by ASTM 2-1946; IPA In TO-15	-		Banpie Collector, Ned. 1.4-1. Semme Center	
ubk SCLaba	1000 B	5 of 20 million and the states in the states		Transportation:		
	fami D				Courier	
	Semi-Per	manent Vapor Probe Cor		1		
l'interia		Probe Tip Set Depth.	/ Sample Depth:	15.0		
П		A 15.5		Volumente: Conversionel	20.317 mL/t ¹ :	
]	B: 18.0	Tubing	1/8-inch (Id) tubing = 2.4		
	Katala antara	() () () () () () () () () ()	14.1. Delt			
G	ç	C: 13.5	9	Mé-anch (id) tubing = 5 /	4 mUft	
C C	Grane Garras	D:	Annakas S	Sand 143, or 142(12) & Ge:	anular Bankonis (3) 5% p	
				84nch borng -		1.03631
	(E		Contracting -	3,41123	
		F Z . 35		2.23-inch borng =	264 mL/II	
	Piters Links Fa	G: 3/16		2.75-Inch bonng =	296 muth	
	P. Cal		Anne	lar (Jead Space Volume:	~ ~ ~ · ·	
<u>_</u>	ě.			C Annual Volume Concernant	the second	
				ng Dead Spece Voluma: Bis Tubeg Volume Contessae	1 T M	
			Tabli Geel Soece Val	erre (Tubing + Annular)	625.6 Al	
		System Purge Informa				
equired System Volume to Purge	of based on DTSC Guidance	i for vélpox probe samples = <u>3</u> Syst	tom ("deed space"; Voly	1		
	Total Site Specific Purge V	olume = Total Deed Space Volume = #	of System Volumes =	1875 6 -1	=9.38 "Hg ==	Dotal De <u>yd Sone</u> (Stargte Have I
	Sar	npling and Leak Check In	formation			
iumme Canister:						
Caritaley Volume:1.	.4-L	Mendold Shut-In check dyration: <u>1 m</u>	wute w	tanifold Leaking: Yes	(No)	
Linak Check Tracer Go	mpound: IPA	ileak bacar compound app	and in shrout engapsui	ading entities systems)	\smile	
and a firm to the line of the				Vayor Prote Yacuum		initial Calmistan Vecuum
Regin Sample Collection		apred Terre Shroud later brices con	ceribation (ppm)	Anhar suide ASbillio	Canisian Macuum (11g)	
Certale: Sampe Asia 180 mL/mm	123	2 4.0-70		21	30	30 TH
1944 to Division	1/27	2 4 -70 4 70-100		4	20	-
PIC Celeration:	1[29	6 100-150		41	- 11	1
	6.0					1
	11					1

final contents wacayum:

"Hg

Q

#1

detertor;

distaio

P2P

Post-Sample PD Reading: TVOCS

PID

Topl

Comments:

1 Я

Anninge:

Y

'n. 120

7-

-

2.4

		ALL AND A REAL AND A RE	Here - 21009b		Owie:	April 1, 2020	
Samphe LD: {V-3-d	\$		Cantager No.	281		1	
Balamphant Alagme:		Harrippo Nee	ây -		Recorded by	; HH	
		Sample	a Analysis information	1			
Requested Analyses (circle all that appl		_	•			Sample Collection Med	lan;
OCs by EPA Method TD-15 or TD-14, M-				D-15		1,4-E Symme Centrol	H7
TPH-gas by EPA Method TO-15	Mechaniae, 10(1	AC, BY ASTMD	4946, IPA by TO-15				
Lab: BCLabs					Transportation:	Counter	
	Semi-P	ermanent \	apor Probe Construc	tion Det	aila		
116.45			obe Tip Set Depth / Samp				
Å			5.5'			-	
E 1000000 000000		А.		Tubino	Volumetric Convendence	28,3*T mLft]	
	3	В:	8.0	Wafeet	1/8-matr (irl) Jubling = 2.4	mLT	
		C	3.5	\leq	218-arch (w) tobing = 5 a		
4		C .	1	1.50			
and ale ale	S-Said in Reviewin.	D:	1	Annuka	Sens (#3 or #2/12) & Gra	Nulle' Berlinder (32,6% p	aroshy):
		E:			8-meh boring *	3.341 m.m	
		_	2.25		225-mch boring a	264 ml #	
		F:	2.05		e contra con gi	2041101	
- L 2 • E	Personal Age	G:	3/16		2.75-wich baring #	385 niL'îi	
					(ulâr Crusti Space Volume) El s Arrolas Volume Comanian]	330	
					bing Dead Space Volume		
					[8 - Tubing Volume Conversion]	43.8.5/	
			Total De	ed Space Ve	okuma (Tubing • Annuar);	571.2 -	
		Svela		ed Space Ve	olume (Tobing + Annuar);	571.2 -	
longer destates Values of Daniel based		-	m Purge Information			571.2 -	
		ande for kapor pro	m Purge Information	d speca" (Va	ншги		
		ande for kapor pro	m Purge Information	d speca" (Va	рилан 1		Indel Jacob Space. Sampe Flow for
	er Specific Pury	ande Kor vapor prot ge Volgenap – Total	m Purge Information	d space" Vo n Volumes =	ншги		(Fold Same Space)
Total Ba	er Specific Pury	ande Kor vapor prot ge Volgenap – Total	M Purge Information besencies = <u>3</u> System Pola Dead Space Volume = Pol System	d space" Vo n Volumes =	ншги		(Fold Same Space)
lequeed System Volume to Purged based Total Ba Summa (Caniebey: Centeter Volume: <u>1.4-L</u>	er Specific Pury	ance for kaper pro- ge Volgeng – Total Campling an	M Purge Information besencies = <u>3</u> System Pola Dead Space Volume = Pol System	d speca") Vo n Volumes = attion	ншги	= 8.5 •Hg∆=	(Fold Same Space)
Total Ba Summa Canister:	ter Børelike Pury 5	ance for vapor pro- ge Volgeog = Total ampling an ManYoki Shur	m Purge Information be servely = <u>3</u> System Polo Dead Space Velocie = Pol System id Leak Check Informa -Increas duration: <u>1 minute</u>	d speca") Vo n Volumes = ation	Marifuld Leveling Mas	= 8.5 •Hg∆=	(Fold Same Space)
Total Ba Summa Canister: Censter Volume: <u>1.4-L</u> Usek Check Tracer Compound	er Bpecific Pury 5 IPA	ance for kapor prot pe Volyaca – Total Campling an ManYoki Shun I	m Purge Information beserveles = <u>3</u> System Pola Deed Space Volume = P of System id Leak Check Informa In check duration: <u>1 minute</u> lack Parameters comprised applied to sh	d speca") Vo n Volumes = attion	Mar Kild Levek og – Yas Mar Kild Levek og – Yas	= 8.5 •Hg∆=	Third Durit Space Sampa Flow for Artia caribian
Total Ba Summa Canister: Canader Volume: <u>1.4-L</u> Usak Cheox Tracer Compound Isan Sample Gollection:	ier Bpecific Pury 5 . IPA	ance for vapor pro- ge Volgeog = Total ampling an ManYoki Shur	m Purge Information be servely = <u>3</u> System Polo Dead Space Velocie = Pol System id Leak Check Informa -Increas duration: <u>1 minute</u>	d speca") Vo n Volumes = attion	Marifuld Leveling Mas	= 8.5 •Hg∆=	Triad Jacob Space Sampa Flow for Artia carriera vpccum:
Total Ba Summa Canister: Canader Volume: <u>1.4-L</u> Usak Check Tracer Compound Sample Collection: Canade: Sample Role	ier Bpecilie Pury 5 . IPA Time (5 c	ance for vapor pro- pe Volyace = Total Campling an ManVoli Shu Elapoed Time	m Purge Information be semples = <u>3</u> System Pola Dead Space Volume a # of System id Leak Check Information In creas duration: <u>1 minute</u> leak Missin comprised applied to sh Shroud leak recent concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mas Mar Kild Level ng Mas	= 8.5 °Hg Δ =	Inde Just Space Sampe Flowfor
Total Ba Summa Canister: Canader Volume: <u>1.4-L</u> Usak Cheox Tracer Compound Isan Sample Gollection:	IPA	ance for vapor pro- ge Volgeog = Total Campling an Manifold Shun Elapsed Time	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In creas clusters: <u>1 minute</u> lask Maser comproved applied to sh Shroud leak ratery concentes lea	d speca") Vo n Volumes = attion	Mar Kid Leaking Mas Mar Kid Leaking Mas	= 8.5 °Hg Δ =	Trial Just Spore Sarpe Fire for Alia Caribian Vpcium:
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Veal Check Tracer Compound Sample Collection: Canate: Sample Pale	ier Bpecilie Pury 5 . IPA Time (5 c	ance for kappripro- pe Volumov – Total Sampling an Menifold Shun Etapsed Time C	m Purge Information be semples = <u>3</u> System Pola Dead Space Volume a # of System id Leak Check Information In creas duration: <u>1 minute</u> leak Missin comprised applied to sh Shroud leak recent concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mas Mar Kild Level ng Mas	= 8.5 °Hg Δ = • 10 Conister Vacuum ('Hy) 3.0 4.3 1.4	Trid Jawi Sjegy Sarge Five for Surge Five for Vice Caribian Vice Unit
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	ier Bpecific Pury 5 . IPA . IPA 	ance for «apor pro- pe Volyace = Total Campling an ManYoki Shun Etapsed Time C C C	m Purge Information be samples = <u>3</u> System Polar (Dead Space Volume = P of System id Leak Check Informa (In creas duration: <u>1 minute</u> (ab) Mater comprised applied to sh Shroud leak ration concentration $S_{P}^{-} = 150$ $S_{P}^{-} = 150$	d speca") Vo n Volumes = attion	Mar Kid Leaking Mas Mar Kid Leaking Mas	= 8.5 °Hg Δ =	Trid Jawi Sjegy Sarge Five for Surge Five for Vice Caribian Vice Unit
Total Ba umma Canieter: Campter Volume: <u>1.4-L</u> Usak Check Tracer Compound gen Sample Collection: Campte: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Net Interview comprised applied to she Stroud leak taken comparison Stroud leak taken comparison Stroug leak taken comparison Stro	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Tida Davi Sjace Sarga File-fa Sarga File-fa Vjourn:
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Net Interview comprised applied to she Stroud leak taken comparison Stroud leak taken comparison Stroug leak taken comparison Stro	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Trid Jawi Sjegy Sarge Five for Surge Five for Vice Caribian Vice Unit
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Network Check Information In check duration: <u>1 minute</u> Stroud leak taken concentration Stroud leak taken concentration Stroud leak taken concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Trid Jawi Sjegy Sarge Five for Surge Five for Vice Caribian Vice Unit
Total Ba cumma Canister: Canater Volume: <u>1.4-L</u> Cash Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Network Check Information In check duration: <u>1 minute</u> Stroud leak taken concentration Stroud leak taken concentration Stroud leak taken concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Trid Jawi Sjegy Sarge Five for Surge Five for Vice Caribian Vice Um:
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Network Check Information In check duration: <u>1 minute</u> Stroud leak taken concentration Stroud leak taken concentration Stroud leak taken concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Final Just Spece Sampa Fire for vice carbin viceum: 20 "Hg
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound Case Check Tracer Compound Canado: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Network Check Information In check duration: <u>1 minute</u> Stroud leak taken concentration Stroud leak taken concentration Stroud leak taken concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Alia carina Vicuum: 2.0 "Hg
Total Ba Summa Canieter: Canater Volume: <u>1.4-L</u> Case Check Tracer Compound gen Sample Collection: Canate: Sample Pale 180 mL/m/1	IPA Time S IPA ISO ISO ISO ISS ISS ISS ISS	ance for vapor pro- pe Volyace = Total Campling an MenVold Shun Etapsed Time C C C V H	m Purge Information be samples = <u>3</u> System Pola Dead Space Volume = # of System id Leak Check Information In check duration: <u>1 minute</u> Network Check Information In check duration: <u>1 minute</u> Stroud leak taken concentration Stroud leak taken concentration Stroud leak taken concentration	d speca") Vo n Volumes = attion	Mar Kild Level ng Mar Mar Kild Level ng Mas Mar Kild Level ng Mar Kild Ng Mar Kild Level ng Mar Kild Ng Ma	= 8.5 °Hg Δ = • 60 Conister Vacuum ('Hy) 3.0 4.5 1.5 9	Final Just Spece Sampa Fire for vice carbin viceum: 20 "Hg

89m

radine: 0.1

TWE

			Sample Location Infon	nation		
Project N	annalisia.:		ey Cleaners - 27009b		Palet	April 1, 2020
Sample I	D.: 5V	1) -015	C=	when Nox 009713	Manifold	No: 127/ 1032
Samplere	Name:	Ng	rison Audis		Recorde	a by: HH
			Sample Analysis Inform	nation		
	Hi Analyses (circle all #					Sample Collection Media:
	by LPA Method TO-15		Wethod TO-15; Naphthalene by EPA # by ASTM 0-1948: IPA by TD-15	A09100 TO-16		1.4-L Summe Geoleter
Luib:	ALC & MORE				Transportation:	Gaurier
		Semi-Perm	anent Vapor Probe Cor	struction Deta	vils	
	70,840		Probe Tip Set Depth.			
	*		1	о запіріа вараі.		
			A- 18-8		Volumetric Schwarsk	and (28.317 mL/t ²)
E1			B 18.0	Lubing Aylanav).	- Glinch (id) lutting -	2 a mLtt
	11	myoraes Gename	C: (3.9 ⁴	C	SV16-inch (id) tubing 1	54mLR
	a	ĺ	C: (3.5			
		Conversion marchests	D;	Annalus	Sand (#3 or #2)12) &	Granular Benforder (33.7% (sprostyl))
1 Ť			E: /		3-mch bon	ng = 3.341 mLT
			F. 2.25		275-both boo	ng = 264 mLnt
	Contraction of the second seco		F: 2.25			The second second
	····· 2	Pares annos fije	G- 3/16		2 75-eich bon	ng = 395 mLti
1.1				4	In Design of the second	

Annular David Spiece Volumer

[30+B1 \ Weaker Volume Consistent)] Tubing Dwad Space Volume:

Total Cend Space Volume (Totang + Annular):

[8 = 108 mp -'o/uma-Commence]

528 -1

97.2 -1

628.2 -

Total SKa	Specific Pe	rge Volume – Fo <u>la</u>	Oead Space Volume Lit of System Volumes	- 1875.6 ml	- 4.38 Hg &-	Eten Dees State (Sanda Flor Pa
Summe Canister: CansterVolume <u>1.4-L</u> Leek Check Trace-Compound	IPA	Mendold Shul	nd Leak Check Information	Wanteld Locking: Yes suisting entits system)	Nu	intial causear
Segin Sample Collection:	Time		Shebul kek becer concentration (ppm)	Vepar Probe Vacuum (*Ng)	Canterior Vilcount ("Hgt	vaculari
Cerlster Sample Rate	1627	0	1. M.	61	30	沾 "Hg
18D mL/min	1629	2-	50-00	41	Zo	
	163	4	70-150	21		
PID Calibration	653	6	50-150	61	4	
						Бла салаан Касмат: У "Но
Post-Sample PID Reading TVDCs		Average				
comments: PIP datalog	+	11-4/1	10	-		
That reading	: 9.1	L ZTM				
		11				

System Purge Information

Required System Volume to Purged based on CTSC Guidance for vapor proce samples – 3____System ("dead space") Volumes

-5-

Sample Location Information

Bampia LD.:	34-4-05	Former Faltway (Canister No: 1946	Oate: Ø Manifold No	April 1, 2020	
emplere Name:	- 25	Haritso	rt Nucska	Recorded by		
gguesled Analyses (eich OCs by LPA Method 70.1) PHigas by EPA Matteri T()	5 or 10-14 M-BTE:	x 6 TBA by EPA Metho	mple Analysis Information dTO-15; Nachmakine by EPA Method 70-13 TM D-1946; IPA by 70-13		Sample Collection Media 5.4-L Summe Caultee	
ab: BCLaba		Colore, 003103 07 45	11 0-14 01 - 01 - 01 - 01 - 10-10		-	
				Transportation:	Courter	
Гальну		Semi-Permane	Int Vapor Probe Construction D Probe Tip Set Depth / Sample Dep			
: 📩			A: 5.5			
ri entere entere	221 1			Volumetric Conversions 9 1/8-nch (k) tubing = 2.4		
	// 🖾 H=	rani Karawa	B: <u>8.0</u> years	2/16-acti (cl) (bbrg = 5		
u	1		c. 3.¢	Treest fiel nond - 2.	4 mun	
• • Charger (EBas	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NURV GREATING	D Annuus		anular Bankonile (33.8% pa	okosniky)
		«>	E:	8-left troning		
ABEXE CREA			F. Z.25	225-moh horing	- 264 mLR	
		n wear fig	G: 3/16"	2.75-exh boring	= 385 mLR	
LF				Annulor Dead Space Volume (C-Fix Annula Volume Convenier)		
				Tubing Dood Space Volume	- Hana I	
ánlari System Yolume Io	Purged based on D		Totel Deed Spece /Siem Purge Information or prote samples = <u>3</u> System ("deed space"	R + Falses Source Converso e Volume (Tubling + Administ) Volumes	0.10.1	
		ottso Guadance lor vap recific Purge Volume (stem Purge Information	e Volume (Tubing + Annului) I Volumes		
umma Çenjster:	Toial Sile Sp	ITSC Guidance for vap recific Purge Volume Samplin	rstem Purge Information or prote samples = <u>3</u> System ("devid space") • Total Dead Space Volume & # of Bystem Volume g and Leak Check Information	e Volume (Tubing + Annuleu) Volumes 	- 8.5 mgs-	
umma Ganjater: Caninar Vouria.	Total Sile Sp	iTSC Guidance for vap notific Purge Volume (Samplin Maritek	Asiem Purge Information or prote samples = <u>3</u> System ("developers") • Total Deed Space Volume & # of Bystem Volume g and Leak Check Information	Numfold Leaking: Yes	- 8.5 mgs-	<u>Total Seed Scene</u> Servela Pora P
umma Çenjeter:	Total Sile Sp	ITSC Guidance for vap recific Purge Volume Samplin	rstem Purge Information or prote samples = <u>3</u> System ("devid space") • Total Dead Space Volume & # of Bystem Volume g and Leak Check Information	Nanifold Leaking: Yes	- 8.5 mgs-	Sergis Roof
Lamma Çanjatov; Canister Volume, Latek Classk) reg tyte Sample Collection;	Total Sile Sp 1 4-L ær Compound:	ITSC Guidence for vep ecilic Purge Volume - Samplin Merike JPA Time Ekspred T	Asiem Purge Information or prote samples = <u>3</u> System ("developers") - Totel Deed Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tester compound applied to throws energy	Numfold Leaking: Yes	- 8.5 mgs-	Serole Row P
Lamma Çanjatey; Canister Volume, Latek Cluck Trug Igit Sample Collection: Centrule: Symple Rate	Total Sile Sp	ITSC Guidence for vep ecilic Purge Volume - Samplin Marike IPA Time Ekspred 7. 341 0	Asiem Purge Information or prote samples = <u>3</u> System ("developers") • Totel Deed Space Volume & # of Bystem Volume g and Leak Check Information d Shut-In steck duration: <u>1 minute</u> (leak tager compound applied to ithmust wrage me Shut-In leak baser concernation (poin)	Nonafold Leaking: Yes Nanafold Leaking: Yes Nanafold Leaking: Yes Nanafold Leaking: Yes Nanafold Leaking: Yes Nanafold Leaking: Yes	- 8.5 "Hg A-	Sergis Roof
Lamma Çənjətəv; Canister Volume. Latek Cleeck Tree Işda Sample Collection:	Total Sile Sp	ITSC Guidence for vep ecilic Purge Volume - Samplin Merike JPA Time Ekspred T	Asiem Purge Information or prote samples = <u>3</u> System ("developmen") - Totel Deed Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tracer compound applied to through energy	Nonfold Leaking: Yes Nonfold Leaking: Yes Vapor Proje Vacuum ("Hig)	- 8.5 "Hg A -	Servis Row P
Lamma Çənjətər; Canister Volume, Latek Cliect, Treç Şitt Sample Collection; Cerister Şample Raje	Total Sile Sp	ITSC Guidence for vep ecific Purge Volume - Samplin Merike IPA Time Ekspred 7. 341 0 142 2-	Asiem Purge Information or proto camples = <u>3</u> System ("devid space") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (teak tager compound applied to ithmust and me Shuttid leak baser concernation (poin) 	Nonafold Legeling: Yes Renafold Legeling: Yes Residence Probe Vacuum ("Hij) 41 41 41 41	- 8.5 "Hg A-	Servis Roof Initial canimer Vacuum:
amma Çanjatev; Canister Volume. Litek Clinck Tring Sin Sample Collection: Centular Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	Sergis Root Initial canibate Vacuum:
amma Çanjatey; Canister Voturre, Latek Citeck Tree Sample Collection; Carister Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	Serok Roni Initial canistan Vacuum:
amma Çanjatey; Canister Voturre, Latek Citeck Tree Sample Collection; Carister Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	initial canivan vacuum:
amma Çanjatey; Canister Voturre, Latek Citeck Tree Sample Collection; Carister Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	initial canitety Vacuum:
amma Çanjatev; Canister Volume. Litek Clinck Tring Sin Sample Collection: Centular Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	in Kal can ja k vacuum: 3 o "Hg
amma Çanjatev; Canister Volume. Litek Clinck Tring Sin Sample Collection: Centular Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	in Kal can ja k vacuum: 3 o "Hg
umma Çanjater: Canister Volume. Latek Clinck Tring Sin Sample Collection: Cerinter Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or proto camples = <u>3</u> System ("developers") • Total David Space Volume & # of Bystem Volume g and Leak Check Information d Shuttin check duration: <u>1 minute</u> (tesk tager compound applied to thread energy me Shirted leak baser concernation (poin) <u></u> <u>12 as - 5 a</u> [ag - 7.5]	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	Anal cansor vecyum
amma Caniatri Volume. Canister Volume. Latek Cleack Trep Sta Sample Collection: Cerister Sample Rate 180 mL/mm PID Calibraton:	Total Sile Sp	ITSC Guidance for vap escille Purge Volume - Samplin Mariles IPA Time Elapsed T. 341 0 449 2- 50 4	Asiem Purge Information or probe samples = 3System ("deed space") = Total Deed Space Volume & # of Bystem Volume g and Leak Check Information d Shut-in check duration: 1 minute (leak baser concompation (poin) 	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	And cansor upper
umma Çanjater: Canister Volume. Latek Clinck Tring Sin Sample Collection: Cerinter Symple Rate 180 mL/mm	Total Sile Sp	ITSC Guidence for vep secific Purge Volume o Samplin Merike IPA Time Elepted To 344 0 50 4 154 6	Asiem Purge Information or probe samples = 3System ("deed space") = Total Deed Space Volume & # of Bystem Volume g and Leak Check Information d Shut-in check duration: 1 minute (leak baser concompation (poin) 	Nonafoti Lessing: Yes Nonafoti Lessing: Yes Nonafoti Lessing: Yes Noper Probe Vacuum ("Hg) 41 21 21	- 8.5 "Hg A-	Anal cansor vacuum:

Sample Location Information

Project Nama/No.: Sample LD.: 5V	-y-d(s	CIGB/	ners - 27009b 🔶 🔶 d	945 Manifold No	April 1, 2020	
implem Name:	7-011	Narrison Kux				
	_			Recorded by	7. MM	_
Ca by EPA Method TO-15 or TO-14: k	BTEX & TBA by	EPA Method TO	Is Analysis Information -15, Naphthalana by EPA Method TQ-15 -1546: IPA ay TQ-15		Batriple Göllection Mydig 1.4.1. Summy Canigg	
eb; BCCobe				Transportation:	Gounter	
	Semi-F	ermanent '	Vapor Probe Construction I	Details ,		
TU 1440			robe Tip Set Depth / Sample Dep	plh: 15.0	-	
Ĵ		A:	<u> 5.5</u>	Volumetric Conversions	(24,317 mL m ²)	
	24	8:	1 B', a Tubi	I I I I I I I I I I I I I I I I I I I	milit	
	2 - -	C,	13.4	W10-insh (k) lubing = 5.	+ mLM	
	3 (mm ar anns a	D	Annub	s. Sand (#3 or #2/12) & Gr	anniar Benforda (03.6% po	rosty):
		E.	/ 	8-inch-boring :	= 3.341 ma.m	
		F	2.25	225-Inch sering	284 mL.1	
	Parac amon. Tip	G:	3/16"	2.75-inch boving	- 295 mL/h	
F				Annular Deed Space Volume RC+6) cleaned Sector Converses	C & a 1	
				Tubing Dead Space Volume (R = Tubing Volume Comments		
				ce Volume (Tubing + Annular)		
	ille Specific Per	ge Volume - Tok	oba samples = <u>3</u> System ("deel apace el Geed Space Volume a # of System Volume	· · · · · · · · · · · · · · · · · · ·	= 4 38 mg 4 =	Total Send Hono (Sampa Fice R
iumma Cenister:	-	sampling a	nd Leak Check Information			
Canistar Volume 1.4-L	_	Nantaki Shi	Allin check duration: 1 minute	Manalold Leeking: Yes	· (Na)	
Leak Check Tracer Compoun	d. IPA		(eak out or compound applied to shroud and			
ogin Sample Collection-	Tang	Elopood T-me	Shrout bak tracer concentration (ppm)	Vapor Probe Vacuum	Gentrary Vacuum (***9)	vacuum.
Conetor Sample Rele.	1335	0		(Hg) <1	10	36 7Hg
180 niL/inin	192.7	2	50-100	4	21	-
PID California	1335	6	140-2=0	65	1 1	-
	11					1
	11				· · · · · · · · · · · · · · · · · · ·	
	11					-
	1	V		-	-	1
		1				f
	-	11				Stel serieter
	-	141				VARGETY
SI-Sample PID Needing TVOCs		Алегада;				Ч "На
omments: PIP Juli-Is	. #5	- 4/1/2				
TVOL The	a ul	220	M			
1000 F CHO	131 11	11				

ample I.D.: 5V-5-0			Cameter No: 2378	Manifold No.		
repiers Name	lie de la company	Altere Herche	Port: 1175	Recorded by	r. HH	
		Sample Analysis in	formation			
quested Analyses (circle all that a					Sample Collection Medi	
Cit by EPA Mellion TU-15 pr 10-14 Highs by EPA Method TO-15		which "CHIS Nathenalese by ASTV D-1346; IPA by TO-15			1.44. Summe Carden	
	1000 01 000 00 00 0	y worke beroka, in woly routa				
b; OCLANA				Танарониесь:	Courter	
	Semi-Perm	anent Vapor Probe	Construction Dei	tails /		
тирия Ц			opth / Sample Depth	: 5.0		
П		A: 55		Volumente Conversional	(23,317 mL/ft ²);	
	17/23	B 8.0	Tubing Jinjiaf was	1/8-line/n (id) to being = 2.4	mLHK	
6	W INTER ARCOME	0 3.5	<	3/16-mph (id) tubing = 5,	1 mLm	
a	Citrate Latente.	D; t			-	
A B 1000	1250	1	Amolos	Genet borng =	atular Bentunte (33,6% pr = 3,341 mL/t	ήμεσο (
		E: 1 F: 2.75		225-Inch boring a		
ne wa: should		F:				
	Para mas 19	G: <u>}//4</u>	d	2 75-rich paring •		
F				rhulfer Deved Spinole Volgime •Exis Annalus Volgime Conveniesce	1 2 62	
			Т	uting David Space Volume		
				(8 • Tubrip Volume Conversion)	79.547	_
				(Sladas (Tuching * Annular)	571.2 -1	
		System Purge Info				
		voper probe servplex - 3	_ System ("Good state") V	alumea		-
g.kool System Valume ta Puryed ta Totu			_ System ("Good state") V	alumea	= 8 × 140 d=	
Tolu	lal Bitt Bytecific Purge VçA,	voper probe servplex - 3	_ System Paced scale") V w a # of System Volumes =	alumea		
Teta mme Canlater:	al Bàir Beinciffic Purger Vol. Samp	r voper probe samplex = <u>3</u> ime = Tolal Doad Space volum	_ System Paced scale") V w a # of System Volumes =	alumea		
Tolu	al Bàir Bgacific Purga Vol. Samp	r voper probe samplex = <u>3</u> ime = Tolal Doad Space volum	_System Picest state*) V w a # of System Volumes = :k information	alumea	= 8 × 14g 4=	
Teta mma Canlatar:	al Bier Benciffic Purger Volu Samp	r voper probe samplus - <u>3</u> ime - Total Doad Space volum bling and Leak Chec infold Shut in check duration.	_System Picest state*) V w a # of System Volumes = :k information	alumes , (= 8 × 14g 4=	
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Leek Check Trader Compo	al Bitr Bencific Purger Volu Samp Ng oundIPA	r voper probe samplex = <u>3</u> ime = Total Doad Space Volum b ling and Leek Chec infold Shut In check duration. [look tracer compose	_ System Poesd space") Vi e a if of System Volumes = :k information <u>1 minute</u> kleppekt to shroud encap:	alumes (), 4 Monthala Leaking:a sulating antha system)	= 8 × 14g 4=	Sende Flor B
Teb mma Canleter: Censter Volume: <u>1.4-L</u> Usek Check Tracer Compo in Sample Collection:	al Bitr Bencific Purger Volu Samp Ma auna Ehepe	r voper probe samplex = <u>3</u> ime = Total Dead Space Velum b ling and Leek Chec infold Shut In check duration. [leok tracer compose	_ System Paced space") V: wa if of System Volumes = :k information 1 minute	alumes , (= 8 × 14g 4=	vacuam:
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Usek Check Tracer Compo in Sample Collection: Cerister Sempe Rate:	al Bitr Bencific Purger Volu Samp Ma aunaMa Eteps Eteps	voper probe samplus - <u>3</u> ime - Total Doad Space volum bling and Leek Chec infold Shut In check duration. [leok tracer compose mit Time Shuud levik trace	_ System Piceod space*) V: wia if of System Volumes = :k information <u>1 minute</u> klieptwirt to shroud encapt er concentration (ppm)	alumes [7]]], 4 = -] Mar#ala Leaking: Yaa subting ontire system) Vept: Probe Vacuum [Hg] Z [= 8 5 14g &=	Senada Flore R
Teb mma Canleter: Censter Volume: <u>1.4-L</u> Usek Check Tracer Compo in Sample Collection:	al Bitr Bencific Purger Volu Samp ound. IPA Time Elepe 1439 C V9 41 2	r voper probe samplus - <u>3</u> ime - Total Doad Space volum bling and Leek Chec infold Shut in check duration. [leok tracer compose exit Time Shund leak trace	_ System Paced space") V. wia if of System Volumes = :k information <u>1 minute</u> el épéent in stroud encap er concentration (ppm)	alumes [7]]], 4 = -] Mar#ala Leaking: Yaa subting ontire system) Veger Probe Vacuum [Hg] Z [Z] Z]	= 8 5 'Hg &=	Servis Floy F
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Leak Check Trader Compo in Stangle Collection: Caristor Sampe Rate: 180 mL/min	al Bitr Bancific Purger Volu Samp ound. IPA Time Elepe 1439 C 1439 C 1439 C 1439 C	r voper probe samplus - 3 ime - Total Doad Space volum bling and Leak Chec infold Shut in check duration. [leak tracer compose mit Time Shund leak trace (Chec Solution 1000000000000000000000000000000000000	_ System Paced space") V. wia if of System Volumes = :k information <u>1 minute</u> el épéent in chroud encap: er concentration (ppm) P	alumes [7]]], []] MonPolo Leaking: Yan subting onthe system) Ventr Probe Vecuum [Phg) Z] Z] Z] Z]	= 8 5 'Hg &= No Cantimer Vectrum (*Hg) 50 25 2-1	Nuki canadar Kacuam:
Telu mma Canlater: Censter Volume: <u>1.4-L</u> Less Chess Trader Compo is Sample Collection: Centalor Sampe Rate:	al Bitr Bancific Purger Volu Samp ound. IPA Time Elepe 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C	r voper probe samplus - 3 ime - Total Doad Space volum bling and Leak Chec infold Shut in creak duration. [look tracer compose ext Time Should leak trace (0.72-10 30-10 20-5	_ System Paced space") V. wia if of System Volumes = :k information <u>1 minute</u> el apparet in stroud encap er concentration (ppm)	alumes [7]]], 4 = -] Mar#ala Leaking: Yaa subting onthe system) Veger Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ No Cartiner Vecarum (*Hg) $\frac{30}{25}$ 2-1 (7)	nitél centiter racuam:
Teb nma Canlater: Censter Volume: <u>1.4-L</u> Leak Check Tracer Cango is Sample Collection: Caristor Sempe Rate: 180 mL/min	al Bitr Bancific Purger Volu Samp 	r voper probe samplus = 3 ime = Total Doad Space volum bling and Leak Check infold Shut in crear duration. [leak tracer compose infold Shut in crear duration. [leak tracer compose]	_ System Paced space") V. wia if of System Volumes = :k information <u>1 minute</u> el épéekt in chroud encap: er concentration (ppm) p	alumes [7]]], [] =] Marifala Leaking: Yan subting ontio system) Veger Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nitki canalari Kacuam:
Teb nme Canlater: Censter Valume: <u>1.4-L</u> Usek Check Trader Cango e Sneyle Callection: Caristor Sempe Rate: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wis if of System Volumes = ik information 1 minute wispand in shroud encapt er concentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ No Cartiner Vecarum (*Hg) $\frac{30}{25}$ 2-1 (7)	Nukil cancely ridei cancely rideu am:
Teb nme Canlater: Censter Valume: <u>1.4-L</u> Usek Check Trader Cango e Sneyle Callection: Caristor Sempe Rate: 180 mL/min	al Bitr Bancific Purger Volu Samp 	r voper probe samplus - 3 ime - Total Doad Space volum bling and Leak Check infold Shut in creck duration. [leak tracer compose infold Shut in creck duration. [leak tracer compose] infold Shut in creck duration. [leak tracer compose] [leak tracer compose] [le	System Paced space") V. wis if of System Volumes = ik information 1 minute wispand in shroud encapt er concentration (ppm) P P P P	alumes [7]]], [] =] Marifala Leaking: Yan subting ontire system) Veger Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nukil cancely ridei cancely rideu am:
Teb nma Canlater: Censter Volume: <u>1.4-L</u> Less Check Trader Compo in Sample Collection: Constar Sempe Rate: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wis if of System Volumes = ik information 1 minute wispand in shroud encapt er concentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nukil cancely ridei cancely rideu am:
Teb nma Canlater: Censter Volume: <u>1.4-L</u> Less Check Trader Compo in Sample Collection: Constar Sempe Rate: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nukil canadari Kaculari
Teb nma Canlater: Censter Volume: <u>1.4-L</u> Leak Check Tracer Cango is Sample Collection: Caristor Sempe Rate: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nukil canadari Kaculari
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Leek Check Trader Compo in Sample Collection: Contator Sempe Reve: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{76}{25}$ 2.1 (7) (3)	Nukil canaday Kaculam:
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Leak Check Tracer Compo ja Sample Collection: Caristor Sempe Rate: 180 mL/min	al Bitr Bencific Purger Volu Samp ound. IPA Time Elept IM39 C IM39 C	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	nidel canada vacuam: 3 o "Hg
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Leak Check Tracer Compo ja Sample Collection: Caristor Sempe Rate: 180 mL/min	al Bitr Barcific Purge Vol. Samp ours. IPA Time Elepe 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1431 Z 1449 C 1431 Z	r voper probe samplus - 3 ime - Total Doed Spece volum bling and Leak Chec infold Shut in creck duration. [look tracer compose set Time Should leak trace (0.72- 50-10 30-15 50-14	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	nitel canadar vacuam: 3 ∞ "Hg Frts cariater racuum:
Teb mma Caniater: Censter Valume: <u>1.4-L</u> Leek Check Tracer Campo in Sample Collection: Geristor Sampe Rate: 180 mL/min PID Calibretion	al Bitr Barcific Purge Vol. Samp ours. IPA Time Elepe 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1431 Z 1449 C 1431 Z	r voper probe samplex - 3 Ime - Total Dead Space volum Dling and Leak Check Infold Shut in creck durater. [leak bacar composed infold	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	nidel canadar vacualiti 3
Teb mma Canlater: Censter Volume: <u>1.4-L</u> Less Check Tracer Compo in Sample Collection: Ceristor Sampe Rate: 180 mL/min PID Calibreton	al Bitr Bactific Purge Vol. Samp ours. IPA Time Elepe 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C 1439 C	r vaper probe samplex - 3 Ime - Total Doed Space Volum Ding and Leak Check Infold Shut in check durater. (leak bacar compose No (0 - 2- 	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	nitel canadyr vacuum: 3 ∞ "Hg Fnti car'atier vacuum:
Teb Tres Censter Volume: <u>1.4-L</u> Less Check Tracer Compo in Sneight Collection: Centstor Semple Relea: 180 mL/min PID Calibretion PID Calibretion	al Bitr Bpecific Purge Vol. Samp ound. IPA Time Empe IM39 C IM39 C IM30	r voper probe samples - 3 Ime - Total Dead Space volum pling and Leek Check In Pold Shut in creck duration. (leok tracer compose in Time Should leak trace So - 10 So - 15 So - 15	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	nidel canadar vacualiti 3
Sample Pit: Reading: TVDCs Sample Sciences: TVDCs Sample Pit: Reading: TVDCs Sample Pit: Reading: TVDCs Sample Pit: Reading: TVDCs	al Bitr Bpecific Purge Vol. Samp ound. IPA Time Empe IM39 C IM39 C IM30	A versige	System Paced space") V. wiel Biol System Volumes = ik Information 1 minute wieleparent in stroud encapt enconcentration (ppm) P P P P	alumes [7]]], [-] Marifolo Leaking: Yas subting ontro system) Ventr Probe Vacuum [Hg] Z] Z] Z] Z] Z] Z] Z] Z] Z]	$= 8 \int H_{0} \Delta =$ Cantimer Vectorum (^a Hg) $\frac{56}{25}$ 2.1 (7) (3)	fina cariaar

			Samp	le Location Ir	formation			10
Project HameWo.		Former P	alway Clea	ners - 270095	No.	Data:	Арлії 1, 2020	
Bample LD.:	52-5-0	115			Caracter No; 5 16	Z. Manifekt No	a: 1026 1123	
Bamplers Harse:			Merrison Ha	sáp		Recorded b	Nya MM	
			Samo	le Analysis In	formation			
Requested Analyses (-			Bample Collection Ma	
QUCK by EPA Method 1	TO-15 pr 20-14: M-E	STEX & TBA Hy .	SPA Method TO	15: Naphthalane by	EPA Method TO-15		1.44 Savama Can	
TPH-gas by EPA Wome	id TO-15	Methane, CO ₂	O, by ASTMC	1-1946, IPA by TO-18				
Lab: BC Lab	h					Transportation:	Counter	
		Semi-P	ermenent	Vapor Probe	Construction De	tails		
Tally	-		P	robe Tip Set Di	apth / Sample Depti	h: 15.0		
: 1	2) 2		٨	18.51	8	Volumentic Convertience	(28,317 mLM ³);	
Γİ 🕅			в	18.0	∵ubing (=),49,40,	116-meh (id) tubing = 2.4	ir L't	
		ripitalan Bernetas		13.5	<	W16-wch (d) tobing = 5	(fum k)	
u a		Creater Barrows		, 1	3			
A B #12.00	1455A		D.	/	Annukas:	Send (P3 or #2/12) & Gr		> porosity).
		Perm ()	E.		<u>i</u>		= 3,341 mL/k	
1673 389 43	50.2350 		F,	2.25	13	2.25-inch being	= 284 mi/8	
	i 🗄 i	Алик насе То	G	->/16		2.75-och soring	-	
IF-						nnuter Oead Space Volume > 0, s annae voere coveran		t
					т	Ubing Oead Space Volume	And a second second	1
						јба Тирју у Зите Солони		
					Total Dand Space	Volume (Tubing + Annubr	· 625.2 .	-1
			Syste	am Purge Info	rmation			
Required System Volum	w to Furged based	on DTSC Guide	not for vegar pr	she senges - <u>3</u>	_ System ("dead spece") v	/otumes		
	Total Se	s Specific Purg	e Volume = Top	el Deza Spece Volun	wa Pol System Volumeo:	= 1875, 6 ml	= 4.) 8 "Hg A+	Joint 2002 bother in Campie Ray Read
		\$	ampling a	nd Leak Che	k Information			
Summa Conistor:								
Ganister Volur	ne 14-L		Wan Rod Shi	at- a sheek dometers	1 minute	Manilold Lasting Yes	: (No)	
Leek Clark	Tracer Compound:	IPA		(hek haper compou	nd applied to shraud oncep	(metaya anjina gyatam)	\sim	
								inidal contister
Begin Sample Collectio		Terre	Classed Time	Shroud leak trac	ser concentration (ppm)	Vopor Prote Vacuum (*Hg)	Carlster Vacuum (***	
Cériste: Sample Ri		1413	0	~ ~ ~		41	3.6	[}] ∽ "Hg
190 mL	מיידיי.	1917	2	201		21	20	
PID Callorab	-n-	1914	4	40-		4	10	_
- 10 Gallorda		1		50-1	80	- 44	ч	
		11						-
		11	1	-			-	-
								-
			1			1		-
		11	16					
		V						finel causier
			1					Meuum.
			-					
Puel-Sample PID Reade			Averages	103				Y "Hg
		#7	- 54 TV	10		1		
Τυ	ED datly	: 8.4	Reall					
			11					

			Sampl	e Location Informa	tion			2
Project Warns No. 1		Former	Fairway Class	ners - 21009b		Date:	April 1, 2020	
Semple LD.:	5V-6- ds			Canise	mille: 602		1 1 1 A	
Samplers Name:			Healson No	tha a	- 9500	Recorded by		
5			Samo	le Analysis Informa	tion			
Requested Analyses				-			Sample Collection Media	
VDCa by EPA Mortun	1 TQ-15 pr 20-14: M E	TEX & TEA b	у ЕРА Матьой ТО	-15: Naphthalana by EFA Med	nod TO-15		1.4-E. Summe Central	
TPH-gas oy EPA Veb	hod TD-15	Methone, CC	О _{ль} О _л ьу Авти С	-1946. IPA by TO-15				
Labr BC La	b					Transportation:	Courter	
		Semi-	Permanent	Vapor Probe Const	ruction Del	taiks ,		
Ţ	NO.			robe Tip Set Depth / S		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
i i	1		A:	c.l		Volumetric Conversions		
FI 2222	Галан			- 1	Тибила	1/6-inch (ld) fubing = 2.4		
		hatten berge	в.	0.0	74/644	recencie (d) roomy - ste		
			c c	3.5	<	3/18-inch (kit tubing = 5	4 mL/h	
		OVER 1 MARKED	• D:		Annalas	Sand (#A or #27216 Gr	etular Banconile (33.6% pe	oreality)
			e			Seach by ing	* 3.341 mUft	
	翻羅し	<u> </u>	F:	2.25"		2.25-mph boring	• 264 mLnt	
		Алас нала Ту	G	>/16 "		2.75-then boring -	• 395 mLR	
	······					ralar Dead Spece Volume •61• Avales Volume Gowarson	1 2 5 4 1	
						ubing Dater Speck Volume	· va - v	,
						(8 × Tohing Volume Conversion	12, 4, 441	
				To	lal Deed Space 4	(okuma (Tubing + Annular)	\$71.2 4	1
			Svela	m Purge Informatie	20			
Paralised Section Mail		0700 0	-	che samplee - <u>3 </u> System				
						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	8.5 Hick	Table - Formula
		a Bylacific Pu	rge Volume - Tob	al Dead Space Volume a Piel !	Syalium Viskumes -	11179-947	-8.1 Ng A-	Richarde * Ion Relej
		:	Sampling a	nd Leak Check Info	rmation			
Summa Canister	:							
Centaler Vol	uma: 1.4-L		Manifold She	n in check duration — 1 min	ute	Manifold Leaking: Yes	(NO)	
Look Cha	tk Tracer Compound	IPA		(Bek tracer compound appear	Lia alwa diencera	_	\bigcirc	
	1		· · · · ·			open disease shamed		ining censuer
Bogin Semple Collec	bow-	Tatter	Ebpsed lane	Sherad lask tracer conce	(med) notieron	Venor Probe Vacuum ("Higt	Danisser Vectorin (***9)	vacuum:
Cankter Sample		\$ 49	0	~ ~		1 A	30	3₀ "Hg
1BO m	Límin	1554	2	60-200		AN 3	22	
	3	1553	મ	100 - 340			15	1
PIC Célico	duen .	1555	6	00-740		5	<u>{</u> 0	
	10	1557	8	P0 12-00		5	5	
		11						
	3		A					
		1	1					
			41				Sec	
			11.11	1				Phal canisher
			1111					A que constante
			14.	Ħ.				5 "Ha
PostSample PIC Rea	ing: Twods		Lowercor					<u>א" צך</u>
	ID data	6 -11	Average C : 4/1	1.				
Comments: /	TUC MI	2 11	19. 4/1	/[.b				
		- Mar	L 200					

Longitions

Flow

Low

Sample Location Information

Semple I.D.: SV~~~	Former Fairway Clea	Cambran No: 10315	Date: Manifold No	April 1, 2020	_
Samplers Nome:	Nextson Hu	aku	Recorded by		
Equesied Analyses (skels all that apply OCs by EPA Malrod TO-15 or 10 14; M-E PM-gas by EPA Malrod TO-15	·k			Sample Collection Medk 3,4-C Summe Geolee	
ab: BC Labs			Traveportation:	Gawter	
	Semi-Permanent	Vapor Probe Construction De	stalls		
nviez	P	robe Tip Set Depth / Sample Dept	h. 15.0		
Ť.	A:	15.5	Volumetric Conversions	(20.017 mL/ħ ²);	
	В	Uຽ_ວ໌ Tubing Brackwei	1.8-mail (initialized) = 7.4	mun	
	Rybridd Barnards C	().s / <	3/18-exit (lo) hobing = 5.4	amLit	
	Danab Kentres D:	Angulus:	Sand (#3 or #2112) & (3g	knular Bantonilo (33.9% pe	arasity'i
	E		S-inch boring -	- 3,341 mL/H	
	F:	2.25	2.26-inch bornig 4	264 mL #	
L	Pierra Militata Tay G:	~/16	2.75-Inch barrig -		
F			nnular Dead Space Volume D/D/c / Annald Volume (Secondary)		t
		1	Finiting Flead Space Volume [Die Tubeg Volume Company		1
equered System Volume to Purged brazed		m Purge Information	Yokume (Tub-rg + Annular)		
	on DTSC Guidance for veyor pri • Specific Purge Volume = Tau	ern Purge Information ote campos = <u>3</u> System ("deel space") : a Deed Space Volume is 8 of System Volumes	Yolumes		I otel Gent Spe
Total Shu	on DTSC Guidance for veyor pri • Specific Purge Volume = Tau	ern Purge Information ute campos = <u>3</u> System ("decisions")	Volumes	628.2 -	I otel Gent San
Total Shu	on DTSC Guidance for veyor pri Specific Purge Volume = Tau Sampling ge	ern Purge Information ote campos = <u>3</u> System ("deel space") : a Deed Space Volume is 8 of System Volumes	Volumes = <u>1875.6-1</u>	- 625.2 μ] = 9-38 τη ₂ Δ-	I otel Gent Spe
Total Sha amma Gantaler:	on DTSC Guidance for veyer pro • Specific Purge Volume = Top Sampling pr Mericks Snu	ern Purge Information ote campos = <u>3</u> System ("declapses") - a Deed Space Volume of of System Volumes nd Leak Check Information	Volumes = <u>1875.6-1</u> Wantskilleyking Yas	- 625.2 μ] = 9-38 τη ₂ Δ-	Hotel Geard Spin Xdang dip Fayer I
Total Sie amma Ganialer: Canisier Volume: <u>1.4-L</u> Leak Check Tiecas Compound:	on DTSC Guidance for veyer pro • Specific Purge Volume = Top Sampling pr Mericks Snu	ern Purge Information ute camples = <u>3</u> System ("deel approx") : a Deel Space Volume & # of System Volumes nd Leak Check Information util streak cumpon <u>1 minute</u>	Volumes = <u>18 75.6 -1</u> Vennold Leving Yas prototog entre systemi Veper Prote Vacuum	- 625.2 μ] = 9-38 τη ₂ Δ-	Hotel Geard Spin Xdang dip Fayer I
Total Sie amma Ganialer: Canister Voluma: <u>1.4-L</u> Leak Check Tracar Compound [.] gin Bample Collection: Canister Sample Rele	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Marilelo Snu IPA Time Elapsed Temp \$ 2 (©	ern Purge Information ute camples ~ <u>3</u> System ("deel apare") : a Deel Space Volume & # of System Volumes nd Leak Check Information it-in stack cursion <u>1 minute</u> (but trace compound optice to arread arread Should leak tracer concentration (ppm) = ~	Volumes = <u>1875.6-1</u> Vannesdi eviking Yas proteing entre systemi	6 25.2	filteid Geord Spine Salang dag t dyne P
Total Sie umma Ganialer: Canister Voluma: <u>1.4-L</u> Leak Check Tracar Compound [.] gin Bampie Collection:	on DTSC Guidance for veyor pro Specific Purge Volume « Tac Sampling en Mariiclo Snu IPA True Elapsed Tane 5 2 (0 15 2 5 2	Purge Information vie complex = <u>3</u> System ("deed space") - a Deed Space Volume of of System Volumes not Leak Check Information vieln stack complex <u>1 minute lawk tracer concentration (complex </u>	Volumes = <u>18 75.6 -1</u> Vennold Leving Yas proteing entre systems (****) <u>C</u> 1 <u>C</u> 1	6 25.2	filter Coard Spec Schenglight Spect (1956) - Carnelign VBCULATT:
Total Sie amma Ganhaler: Canister Volume: <u>1.4-L</u> Leak Check Toesan Compound: Gin Bample: Collection: Canister Sample Role 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex Maritcle Sou IPA Time Elapsed Tane 5 2 (0 15 - 5 72 15 2 5 4	Purge Information Use complex	Volumes = <u>18 75.6 -1</u> Vermitikal eveking Yes problemg entre systems (***) C 1 C 1 C 1 C 1	6 25.2	filter Coard Spec Schenglight Spect (1956) - Carnelign VBCULATT:
Total Sie amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Tracan Compound: gin Bample: Collection: Canister Sample: Rele	on DTSC Guidance for veyor pro Specific Purge Volume « Tac Sampling en Mariiclo Snu IPA True Elapsed Tane 5 2 (0 15 2 5 2	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filtei Gest Sie Stagdy Hyw I Nitei Genedyn VBCU.MI
Total Siv mma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Treas Compound: Deak Check Treas Compound: Manager Collection: Canister Samply Rele- 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = <u>18 75.6 -1</u> Vermitikal eveking Yes problemg entre systems (***) C 1 C 1 C 1 C 1	6 25.2	Total Coard Sur Siding dig Harri Total - cancelly VBCULATT:
Total Siv mma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Treas Compound: Deak Check Treas Compound: Manager Collection: Canister Samply Rele- 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filtei Gest Son Siden der ber Tiltei Genaufe VBGUGMT:
Total Sile mma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Treas Compound: tea Bample Collection: Canister Sample Riele 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filtei Gest Son Siden der ber Tiltei Genaufe VBGUGMT:
Total Sie Imma Ganisier: Canister Volume: <u>1.4-L</u> Leak Check Trecan Compound: Din Bemple: Collection: Canister Sample: Rele- 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filtei Gest Son Siden der ber Tiltei Genaufe VBGUGMT:
Total Ske amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Trease Compound: Dea Bample: Collection: Canister Sample: Rele- 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filtei Gest Son Siden der ber Tiltei Genaufe VBGUGMT:
Total Sie amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Toesan Compound: gin Bampie Collection: Canister Sample Role 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	Total Carriely Standart Stan Standart Stan Standart Stan VBCUSATI: Source of the Standard Final carrielas
Total Sie amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Toesan Compound: gin Bampie Collection: Canister Sample Role 180 mL/mm	IPA	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	filteil canady Standy Hyr Hiteil canady Hiteil canady Hite
Total Sie amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Toesan Compound: gin Bampie Collection: Canister Sample Role 180 mL/mm	on DTSC Guidance for veyor pro Specific Purge Volume « Top Sampling ex- Maritcle Sru IPA Tree Elapsed Tane 5 2 (D 15 - 5 7 15 1 5 4 5 2 7 4	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	Total Carrison Standart Sur Standart Sur VBSUUM VBSUUM Final carrison VBSUUM
Total Sie amma Ganialer: Canister Volume: <u>1.4-L</u> Leak Check Toesan Compound: gin Bample Collection: Canister Sample Role 180 mL/mm	IPA	Purge Information Use complex	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	Total Card Sur Standy Hype NBSI Cansuly VBSUUM: 3 14g
Total Sie ammus Canitaler: Canitaler Volume: <u>1.4.L</u> Leak Check Trease Compound: Gin Bample: Collection: Canister Sempley Relie 180 mjL/man Pitt Collorscon:	IPA	Purge Information Ute camples = _3System ("deed space") - a Deed Space Volume & # of System Volumes nd Leak Check Information Util streat component optics to shread encer Shread leak types concentration (ppm)	Volumes = 18 75.6 - 1 Valumes() evening Yas problemg entre system(Vapor Probe Vacuum (***)) C 1 C 1 C 1 C 1 C 1	6 25.2	Prai cantalio Prai cantalio Prai cantalio

Weber, Hayes & Associates Metropology are Criteromous Depletening 121 Magaz Back, Weber Status 132 Magaz Back, Weber Status

SITE HEALTH & SAFETY PLAN

Onwen Probe Soll, Soll Vapor, and Groundwater Sampling

The USer Netable and Solvey 20th has need an even of prevident to the California Comparement and Health and Solver Solverson and the B. Section 5192 Material Advances Models Topological and Comparison Provide Solvers The USE December of the this and Califord Advances and top 125 USE 1200 Heart down Reserve Operations and Advances on Advances of Advances

3.0 PROJECT INFORMATION/CONTACTS

Job Marrie and Job Marriert, Primer Ry may Observe a 210055. She can apply 1500 Cyclose Pould Serve Cross 100 Denne Sanca Chur Courte Type of Facility Works Residential Jadaening Folicit's Courtes into Una Courtes Residings

Subsective.tors Gm-Site:

Cascada Orilling Incorporated 10, 57 Learnin (2003)10 (530) Net Alertaion (2007) 707-018-0165

Regulatory Agency Contact(s):

Lenni Republicion Antonio Central Court Regional Vestor Availuy (untrol Board Court Officer Group Mithop Florence 505 525 2132

2.0 EXPECTED SCOPE OF WORK

Sor Walling Samilian

+ Install, cample, and destroy set value probes withe Site location

Son and Groundwater Sampling:

mitall sample, and desiroy see cores to groundwater at the New Ioculton.

1

Stall Service Man. Rouwe Freihe Ser, Soll Vapar, and Graunowards Service ag

Key Feld Personnel:

Received Horse - Weber, Revisional Association	Conference Englisher & Kon Salary Oli per	00%ce 15231 /22/ c/65/ 16/ (6531) 840/ 660
Refer Hydery, - Wyder, Hydrawyd Gwraegol (Sec Sofer (4) on	00.56 (821) 452 (556) 160 (553) 713 (008
Includion labor Cascude Uniting	Jan Keil Other	Gel 107-218 3758

3.0 HAZARD ASSESSMENCE & SITE CONTROL MEASURES

The Mielkonia mischwris used in the operation of a dry despite justify. The primary hashin and salady concerns at the tate while them preside disades with egopment. The suprome pathways of poisson are initialized of concernsional solecons ingestion, and demainment in Sae workers will only be exposed to there elevated concernsions for a very writted amount of time and investighted to PPT will be used compliance.

Site Tanka:

- En long real configurable subrule (Sig) \$ instal above of temporary to \$ varies probes.
- Sampling of the soil vector problem
- Harmovalforshouton of the remainion, soil appriptions and packleting with rement grout.
- Testal at on whe proper description of soll can not so grown therein (approximately 20 feet bjob).

Arristanted Physical Reserve.

- Traffic Truck and nearly equipment institution would within explanation rate will be avoided by maintaining execution and ysing condisignals. Althousy you prior built be required to revolve working audities exercise signals.
- regiser Equipment: Powerist objects hausda associated with defining equipment; and note withe mangated with people risks BIPPL and exclusion of personal other than those Authorited in the drilling areas.
- Underground Parards: University be closed by Underground Service Med (IIIA).

2

WHA

See Selecty Per-Works Per-Dulbon, Solf-Vacual, and Cetturd Aster Sampling.

4-0 PERSONAL PROTECTIVE EQUIPMENT & SITE MONITORING

Personal Protective Egulgment: (storrequired Personal Protective box preeview by ma)

Fixed on the scape ordinature of this field program the following appropriate level of consonal protective equipment is ensured in a \square B \square - C \square - D (type

R - Angeland, A - As approach

Hand Hay, II	conversion de califié
Selety Boots R	Hereinstein Court & Coylean mermanik
Orange Ven R	Fille, Dates & Corganic Apport & previous
Learning, Procession 16	Fileway Aread Aread In
Types Corecol si ut	

S be Mondormy:

- An appear in the Site Control section (above), a pulsial photo neutrino determine will be used to periodically monitorial quality or tag work sure.
- Partners monitoring will be conducted by means of the "backy system". Appropriate prevaillons and/or medical/amergency response will be implemented it signs of converted delivers or images are departed or injury sector.

Conferred Specie Setup Proceeduces

Confided space units is not a component of the Reformerings (how

Tallgate Meetings

The Link Superintendent will conduct pairs fieldade Safety Manings prior in commencing work of the Site. In addition, the following minimum information will be provided to all the personnel involved with the project.

- Invested personnel and alternate responsible for Site safety and read/hit
- Safety has the and other bacance prevential the Site.
- Hospital directions.
- Seneral cutery procedures and cractices to uncomparing a from measuring the Tree.
- Tass spendin procedures and practice;
- instruction for twie the of equipment.
- MO victors for reforms of permutative protective equipment.
- Recognition of two poors and a gas, which might and rate reversions recognition

Δ

- Sele control megsures.
- Social Distancing promotil;

WHA

See Selvin Plan (Files - Koho Soll, Sei Vapar, and Desensative Servicing)

Available and Chern-cal Hearings

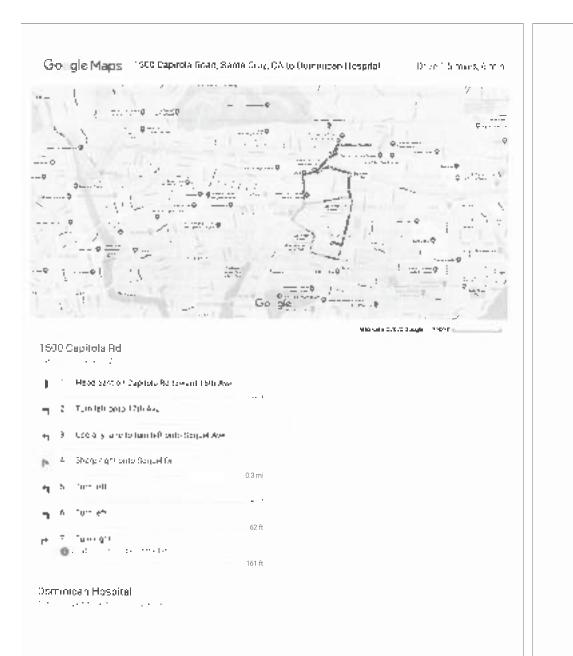
RAMA DOM D	ЕЛТЕСТЕР СОИСЕМ ПАЛІЙН ПІЗСІ ПІЙНІКІ ХАН	NUMBER OF STREETS				
PTT 1 (07-10-4)	845a sent poplet of 100 × 65,000 αργ∽720080	ington epit, who those was also also average distance closer run beedens haven. So				
	COMPART 2 100 2000 1-626 000 rig/mR:	AT ACTE MOSH Puckti Code to Cleans' (" Marcial la carale)				

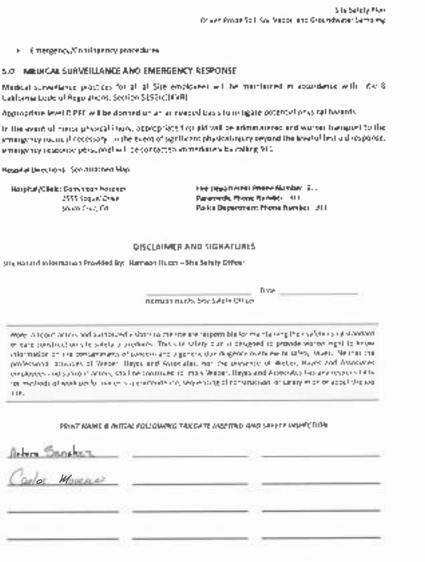
Site Control Measures:

Ingration Ecologie & Control Measures:

- Ingention of intracted materials to primary (primare) expensive route of concert. This expensive partware an tercentry led with the ingeneration of proper types of partware), i.e. wearing globes and washing before cating, include, or using the reasonable.
- Initialized will contain non-involution primary spotential, aspansic route silicon contains a potable photoson called order to all be used to period cally investor an explicit spotence of a tone. If contains all solid silicon contains of a OC exceed 200 ppm for growth that a minutes theo the each context if contains to available. Cools C EPS will be donned (i.e., but face inspiration will bego %) then contributes on geographical sectors of EPS.

Traffic Control Maximums (pedentition and ech<id):


- No perfections will be allowed of the work area other than summing dipensions;
- Finally and heavy component profills bacants when need as no accessful be worked by maintaining even contact, and using has disigned a shift every experiment will be required to have waiting bad bio revenue regression.


Getonganitumion Procedures.

 Expands in ut m/ finall water / 0.1 woter infidecon enter will be properly conference33 and properly coposed of following the field wweb(gation)

3

WHA

5

112.

WHA

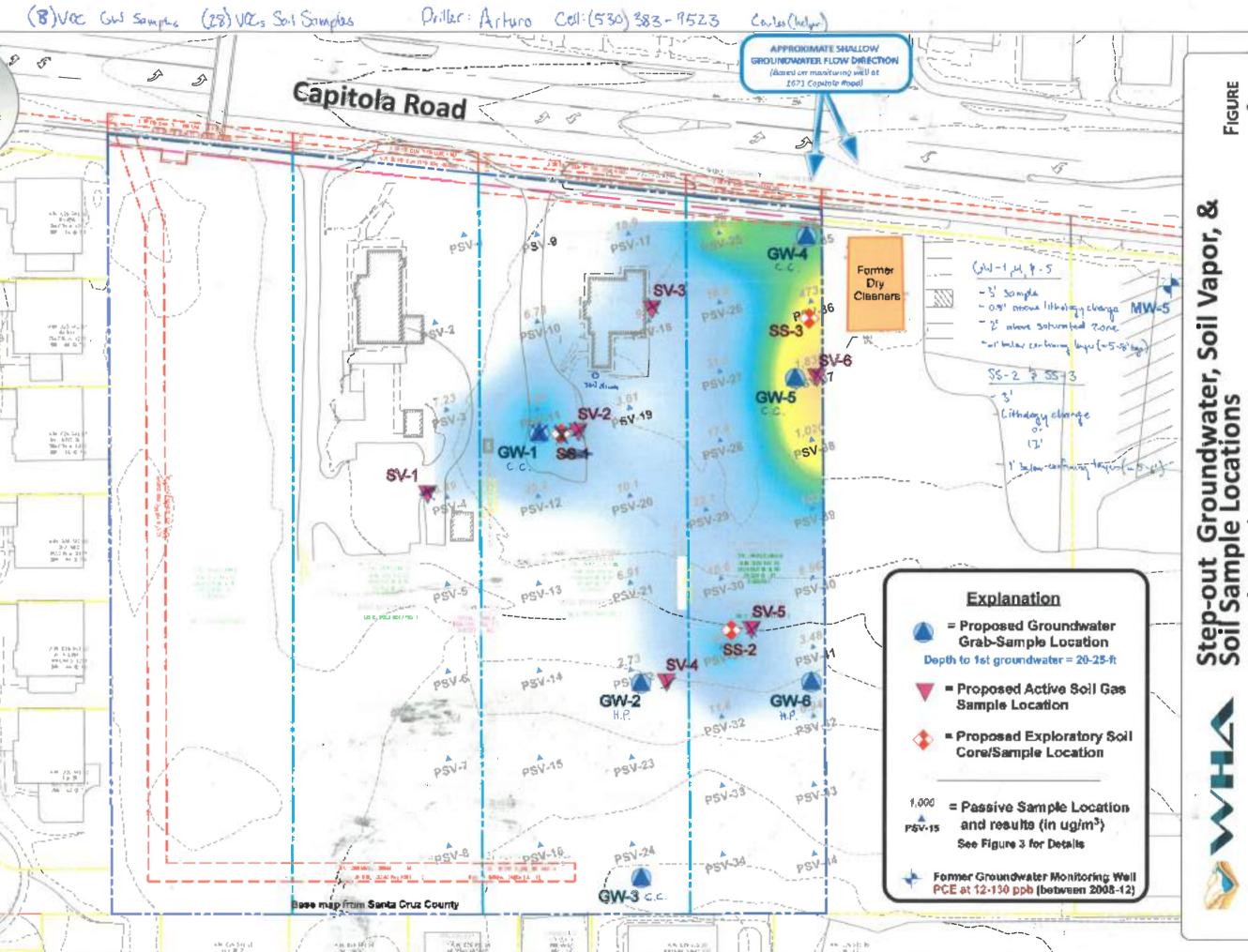
Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

5) Groundwater and Soil Sampling

Project (Chert: City of Santa City	Project # 21-004
Ste Location: Compitale Rd., Sonth Cruz	Date: 4-1-20
Field tasks: SN GU Seit Samplen	Weather: cloudy morning
Personnel / Company Un-Site: Concente (Arturo); UHA (HH, EN)	8
Atlachments: Site Map Data Sherts Geologic Logs Photos	COC Chargeable Materials

Time:	Notes:
0145	- Arrived ensites with Harrison Concerts is to arrive around prove Phy I for
	- Arrived ensite with Herrison Cancade is to arrive around 0800. Plan to lay and set up soil report (due)depth) first (SV-1 through SU-6). Logging all contributionity cored bright 915 bys
	contributanty cored bring 5 415 bys
0910	- Site Safety Meeting endroved cours in and to stay 6' away from each other. Also RE is
	ins main contornant or concorn upor).
0830	- Sharting on SV-2 in the Endered deirenney. Taking samples (reptile scaled mutal holes sample) at 5' and 15' logs the soil vapor brockup scripter.
•, •	at 5' and 15' bys the soil voller backup scripter.
	- Storing Still Dryn (55-gal) directing south of the cartent house
0930	SV-2 suffing time 0910.
· · · · ·	- Starting SV-1. Sch-Ham 0906.
0758	- Frighted loggion SV-1 and SV-2. Connecting decoming drilling provident:
	-Finished logging SV-1 and SV-2. Creantly decoming drilling equipment: Soil Logging highlight notes: Confining dence silty SAND loyer-(very stiff) m5-6 bys. Chaque to a loose stifty SAND - well Gradid SAND w/Grandi Rom 9-6.
	~ 5-6 bys. Change to a lasse Stifle SALD - well Graded SAND w/Grand Rom 9-6.
1040	- SV-M set at 1040. Finished logging (very similar with the other two soil repr
10510	TOWNER TO SUSS JOURS SET AT INDE
115.0	- 3V-0 set at 1150. Taking backup sample with Izra care hits boonuse
1257	this location is in the "contomnated and.
17.57	- Manny I the last soil vopar SV-S. SV-C was my striken to get the net
1210	- Taking Lunch
1230	- Pat accined onester talked about taking additional samples below the carling desce
	Silly SAND, at n5-10 bgs. Samples will be taken at ~ 13-16 bgs in the well graded
	sand more w/ Granels Zone From 12-15 kgs to insure there is no below continuing long contamination. We will there a better ridea where this sample should be taken after a grandmatur sample location. Holding all of these additional samples except for the MagHoos is hat zones.
1.11	contamination. We will blank a latter rates where this sample should be taken after
· 15 15	a grandmatter sample location. Holding all of these additional samples except for the
17.14	WegHenric hat Zenes.
1316	-Show tring an SV-3. Declars note it is very hand (compacted) to drill SV-3. SV-3 set lion 13.
1404	- Moving to burry. Targeting List examplied saturated 2 par (122) and here)
1437	- Moning to Gural. Tangeting that encountered saturated zone (~20-30 type) - Groundwater at 20-28' logs in Well ground SAND of Groves. Wet to saturated starting
	from 21-2.9'. Sample laken 2' above saturated zane + 29' (GN-1- d24)

Signature of Field Personnel & Date


Webor, Hayon & Associator Hydrogeniajy and Environmental Engineering

Page 2 of 2

19

Project / Client			Project # :						
Site Location:			Dale:						
Field tasks:					Weather.				
Personnel / Co	mpany Or-Site.								
Attachmonts:	Site Map	Data Sheets	Geologic Logs	Photos_	COD	Chargeable Materials			

	Time:	Notes:
	1400	- Citta an around it sampling were for a second of
	1450	- Setting up growidwate sampling using Cocales peri-pump Sampling with a 5-foot screen from 2.35-281 kgs, Samper 1D: Con-1. - Only on to fix no votation overing, from to have to reduce the contracted and
		I T T T T T T T T T T T T T T T T T T T
		Firther. When Screen is from 21-28. Finished sampling the 64-1 samples. 64-1-d3; 64-1-d7, (44-1-d2, 64-1-202) in casing)
	16:22	- Evillar un putter (d. 1 1 ante C 1 d C
	[620	- Finishing up pulling Utri-1 and packing up for fiday. Planning a commission back temmeron at 0700. Still need to continuently said 3 Childrenge and 2 sail sample and hidrogenets 2 Giv complete
	-	and hydrogenets 2 Giv gamples
sp	6000	
	v 100	- Arrived anothe with Artico and Carlos. Taday's plan is to continuously core
-		CW-4, CW-3, and CW-5 and lay there in Artail. Also continuously core 55-3 and 55-2 to 12-feet or deeper if voiltiglet continuousling to found.
10	X 1 1	And also hydro porch Con-2 and Con-Go to a target screen of 25-30 bys.
	0711	
	0720	
	01606	- our at 24.42 and total depth is 32' laps7.63' of water in borng. 10' screen
	8 B ·	Som 22-32 bge
	0926	
	0815	- Finished bur-5. Moring to 6W-9 - 6W-9 depth is 28' (screened from 20-28' bys). Water bud from 2001-08' (36' fluiding)
	(000	
		- Finished \$5-3. Took sample at (55-3-63) 3' to check shallow source, G' to check
	· • 38	directly above very stiff routing layer, and 12' to chick below Confirming layer
	1042	- Moved to Out-3 Saturated from surface to confining very doin solusion
		- Moved to O <u>W-3</u> Saturated from surface to confining very doin softyshipode - matter (or at 21-24 loge, screening from 19'-24' (Sterren)
_	1120	
	2 ***	- Harrisen came to check in working on 641-2 (hydropuching to 24' bgs.) - WH-2 scored from 19-24 Team during at 22 1' (191. P. 1)
0	(154	- WW-2. Screened from 19-24. Tegged notes at 22.1 (1.9) of water) - Storting 53-2. Lot Samples at 3 (shallow), 4.5 (above confirming larger), and 12 (befor continuing - Exact time
1	1230	- kunch fime
	1340	- Redrilling Ger-Ge (no motor screened from 19-24 lags.
	13 Sig	- Redridling Gur-Ge (no water screened from 19-24 bys. - screened from 20-25 and got water from 25 sonalized Held Forebornel & Dave
	1430	- Emisted. Going to Feather to ship samples overnight.

			Alling the	+iler		ED		-	N	dais (Detailed)	Preprint lat	-	Them of Taxbook	14F	ł
Neber, Hayes & Associates - CA 25 Westpile Drive Vataneville, CA 19575		120 West	Payable- La Igate Grive Ele, CA 8503		11	1	-	100				Pace And Acal		1	
			tel 'n lang webe regel an operate be					23	100		10	Appendiation of the last of th	203-17		
uni accumer Cepitala Rel		ing them	Sec. La 1	Charte	Passe Co Int. Art. C		2		122	1. Aller:	100	20	Nacion States	间到运动	1
#91-722-3580	Client frequet il Dublizo		WEBSATM		69015-43		di Marie	Nufrice	ICP Nulfitis	100	15	-	A	198	
Car Distan	ISAL CAPIT	CAMPTOLIA NO SANTA		21	0.01			Duch N	Admit		183	WERHATWCA			ĺ
hered by top server				Quarts #			a line	12	sum	- 122	158	Patige: 9763844			8
madurety n		104	(Red Star) without cherry	Carls II	and streng	1	vocs #2	re weld	NOC			100	Intel Intel March 1994	(Tearl)	
Tanyo 0	Desition	Signa *	Deptill	6969	116	1-	1	ol a		100	122	100	Annald .	lama kipinayi	Ē.
Gui-1	1	GW		4/1/20		13	10		X	200	124	28			
Gu -1		-QW		4/4/94	1		122		122	1822	100	121	-	-200-	đ
1441-5		GW	1		1	-11	10		100	185	100	1000		200	9
641-5		-6W	-		-		10	h	25		100	1000	1.17	EFF.	
64-5	1000	GW	-	-	1	-14	15	14.5	X.	- Cart	1235	-	0.00	1000	8
64-0	1.1.1.1.1	GiV		- W.	1	13		1.1	X		1000	-	NAL DO	100	B
SV-5-15	11.3	59M	5	"ichen		H	412		13	100	1000	000	HOLD.	(and the second	R
GV-5-15		m.ew-	15		-	1	24		10	100	1003	-	Ha.D	Contraction of	H
5/-4-05	1	15	5	++-		110	1.1		1000	-	100	-	11/0-172	100	8
SH- G-AVE	-	18	115	41		2	.03		1000	1. 1917	- Trainer	-	1401/2	tamine 1	8
Los all in 9-line 9-linearity 8-lineary	Reports					eri Tena Pow Dive						122,023	nir fredini, d	the state	2000
M Designer	Later and a		4		rares.		7	58	68	3922		State and a	M. American	8.03	2
descention to an and a second se	-	Here a	p.e	3:34m 3:34m	Franker be from					10	- M	Per unior	an a shift		No. of Lot M.
initial states		Date		Tree.	Sandy			eF		7/3/20	8120	-	04-0020	178	2

			lating toks	estate:				-	- 4	where Charmon Channellyn	1000	Then of Canad	there is to the the		
Weber, Hayes & Asso 20 Westpile Drive Natureville, CA 95576	ciates - C	ι.	120 West	Payable La Igate Drive die, CA 9500		10 th		-				20	Analytical*		
laport to Natio Ryderry			Seal faith		-		33	12 63	100	Advantation of the local division of the loc					
negel.		Cryffoly Orlected	Such (04%	PERMIT CO		The second	6.		1.1		1004 101 10 10	- 00030		
1011 122-3580	Clare Property Dy000	Clare Protect #		WEBHANK	CA-21008		Diriving.	Survey Survey	Arrib-HI		12	A	199		
Euro Nuber				104	100			DauDr-N	ADmo		- 22	Sumari We	LIP-ATIFICA		
	Radh? Gr	-17	Thinks .	Quote #	nada textind	12	VOG RUNA	y weight 21	VDCs \$266 ADmAmB-HD			N BOOMT (177) Fast 123 - Ben Tell	63684		
Same D	Care/Seal	- 50000 to *	3april	Cipia .	-	Pen	3	a a a	with	- 100 - 110	1	States in	Second Meaning		
55-2-d3	1	55	IS.	1		12	1 K	X					1007		
56-1-245	1.10	55	1.5'	1.1		11	X	X	201			3	-28-		
3-2-112		-55	121		1.00	11	拢	IX:	100	1000	1000	1200	- Q		
5-3-25		66	.8'		1.000	44	120	12	23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	-	140		
25-2-26	1000	- 55	1	1		11	1.82	X	100	1000	1000	1111	-H		
<s-8-812< td=""><td>11.</td><td>- 55</td><td>14</td><td></td><td>1 1/1</td><td>14</td><td>120</td><td>X</td><td>12</td><td>100 Barris</td><td>1000</td><td>1</td><td>-45</td></s-8-812<>	11.	- 55	14		1 1/1	14	120	X	12	100 Barris	1000	1	-45		
6AV-1-J3	1	- 55	1	4/4/08		10	106	\times	1000	- Den 121	Contract of the local division of the local	-	TIP:		
Mal da	1	55	3	1.15	1	1	12	X	100	S		-	st		
Cal-Lodia		58	""		-	1	125	\times	-		1000	-	-1-1-		
GN-1- \$24		- 55	1.10	+	1	N	X	3×	100	20.00		1	-16		
* Martie 12. Sel att. Ar. 9.10% OM Geosphere: 8 Bistory WW Watchiese	Reserve								-	41 1000 Por 1000	1797. 74.0 8081121.0	A ACTUAL	100		
DW - Droding Water Of Other	Same in a	atte			Silver)	15	年	5 8	160	39226	104 Pro	And the Application			
Participation in Section	5 ····	4-1	-10	3:30p	Fed E		6-			This bians be small - Fee Ly- and 100	4	and with the tax			
Antoported to Openet		Ges.		Yele	Women by 1987				1	10-1-9 20		-			
References by (September)		(Late		les .	Sandy		54	-		[13/20 81	30		1070		

Weber, Hayes & Asso L20 Wedgate Drive Watsonellie, CA 95976	130 Wes	A Payable- La Agate Drive Alte, CA 3507	18					Bernata		Pres	http://			
female to:				Advertise from	101-	生			100		-823	The second little		
Ryan Nyberg	- 1	Duffiles.	ورخشا	a state of the second	Passe Ce				243	100	125	-	Phone 201 (189-19) Phone 201 (19-19) Phone 201 (19-19)	- INK-901
International Cospitoria Ref.		Olectel	Sinh C	10.00	PE AR C	1.11	18.	11	10	1.00	100	100	and the second s	PTOFESC
hone \$21-723-8580 in	Clien Prijeli i 21909			WEBNAYW	CA-DIDER		on No	OP NUPME	time is		12		THE	A200
Eventury land	100,000 IN ALL CAPIT		ANTA	10.4 2	001		N.		THOM IS NOT	1			and the second sec	
And Constant	Rand Gale March Marked		Querte #	i becarro hearber		04 0408 1	No. of Lot, Lot,	VOCI RESONDRIAMS			Tempore T16 recept P760 rate 130 Below		1844	
Packad anna In	- Berry fr	N.	1.1.11	1.000	T	14.00	Q.	14	A and	1.000	100	-122	Traped top	10-10-2
Sarger II	Degilat	Makes *	. faght	ibes.	-Tens-	1	語	1£	1	Contraction of the local division of the loc	1000	1000	- Antonio	Server # (Ad units)
141-5-13-	1000	55	3	4,5,90		2	X	X		200	1005		1	-17
Guest de		- 55	6	17	122		1.5	X	201	1000	1000		1.4	-14
Get-T- Alt	1200	55	trt.		1	11	17-	X		1000	100	1		2ª
(++-3 k1*	10	55	3.9	12			150	K.		1000	1 12.00	1 230	1	- 28-
64-4-15		55	3	101			192	×.	100			1		220
6-1-9-14	100	55	6		1.0		120	X	-	- 1983	1000	1000	-	222
(address of the	1000	55	12.	1.0	1		2	\geq	1.1	1	1000	1		203
bit and a	112.3	55	15.	. 41	9	1	18.	15		10.00	1000		-	-29
59-1-15	1.75	-55	5	47the	-	1	1.00		150	200	1000	1000	HOLD	120.00
SV-1.415	1. 1	- 55	15	4015#	1	1	10		150	1000	1000	1 24	1404.15	The second
Marter 5-lad all-de P Titre 19 Doutstaar 8-Kaaksa 19 Maachigan	Remarks										tera	And Designation	entrice incident - Frankers (University) - despite tallers brights west	1 Stor
Per Develop Water	Livit to			00	Thinks .		27	S	360	312		THE DAY	ALL ADDING	
Wingenbert by Separation		9/2	lan.	31307	Fed	541				the front factor	e odgao He	Mr =		20
parameters by States and		Cane .		Tive	Description (1)				1	0-1-9	18	- Line		
Infrancial by Squares	1	(2019)		Ten	San	1 w	Sal	sse.	F	1/2/70	8.3	D		1:20

			lating toto	THE OF		T			-	participant of the state of the	/ Prejugiative	1000 (Dec	of Taxabase	Pep_2_	
Weber, Hayes & Asso 122 Weitpste Orien Weitonville, CA 19076	ociates - C	A	121 West	Payable La Igate Drive Elle, CA 9507	10						Prochesticat				
Report In: Ryan Mykneg			Terrer Tor Lo	891	194	Ь.	2	1.60	183	1000	1 aufilia, 7 il 107	The Party of the P			
hijjel	. 1	Crylines	Sale	C	Passe Dr.		1		1 million	1.00	1000	1000	1.02110-001	認違	
Description, Capitalia Ibl Provide 831-722-3580 Feat	Cleve Project 1 21009		148.71		CA-21109	1	Dista	1	DH-HU			10	us+ L120 302		
Subsect to (see) [Lype, 1]		1540 CARTOLA RD SANTA		10.4 1	400 m	1	-	Der Confront	ADSE ADVIDU			Norman WEBMATWCA Income T183307 Pringer P7618344 ph 112 Association			
The second in Department The Second S	in the second se		-	Quete 8 Date 6	auto Hoemat	-2.5	05,8240 40	Airight	VOCI						
Same D	Congrister.	jain*	Juges.	(iae	thes	1-	DA NO	Vitration	where a	0	1.50		and disc.	Anna Passer	
av-Sods	1	55	1.3	4/2/4	1. 1.7	2	0.	X	1	100	100		1.2	-25	
64-5-40		55	4	- auto		11	×	X			100			-245	
(41-5-11)	1200	55	TL.		1	11	100	X	100		-			227	
(4-3-4 27) C	1.1	: 81	17	*		11	190	X			-100		-	-18	
SV-1-545		55	5	4/4/20	1.00	-1	111	-12	10.8	1.000	1000	1000	04D		
SV-2-115	1	15	15	1	1.00	H	1725	1.5	102	1.000	1122		11	-	
SV-3+45	1	. 95	-0			1			100	1200	102	Contraction of the local division of the loc		1223	
SV-5-415		155	18			1	155		22			100		10.00	
11-2-2-20	-	50	8	1 1.		1			27		1000	1011	1	1. 330 8	
01-4-15		-55	一位	4	1	4	17-		100	1000	112	100	\$	1.000	
* Marro 26 - 514 All I de F. Pitter GW. Druckbears B. Baseur WW. Weisenbare	Remarks										Tene	Real P. J.	and and a	The second	
OW - Driving Water Of - Other	100-100 miles		-		tunes of 1	2.	HS	86	03	9126		And Dear Party	Astrony	- 33	
Petrossie in Careford Terral	2	21/	1/20	3:30	ne Metawathe Sign					Tree Hards has prov	THE THE	Alterization for the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Petrovened to : Department		(inter		(me	Rossering Star	and i				in-leg	14	The second secon	a mary to	and interest of the	
Pelingualed to: Optotoni		Dete		-	Sand			5	2	2/2/20	3:10	141		100 TE)	

Data Submittal Package Soil Vapor (Passive & Active), Groundwater and Soil Results 1412-1514 Capitola Road, Santa Cruz

6) Field Methodology

- Passive Soil Gas Sampling
- Hydraulic Driven Probe Sampling
 - Active Soil Gas Sampling

Weber, Hayes & Associates

Passive Soil Gas Sampling

WEBER, HAYES & ASSOCIATES

FIELD KIT GUIDE FOR PASSIVE SOIL-GAS INVESTIGATIONS [READ ENTIRE GUIDE BEFORE STARTING SURVEY]

I. <u>General Information</u>

A. BEACON assembled this kit for **Weber, Hayes & Associates** to perform sampling on the **17th Ave & Capitola Rd. PCE Site in Santa Cruz, CA.** To meet the project objectives, retrieve Samplers **7 days after installation**. Contact BEACON, following installation of the samplers, at Ryan.Schneider@beacon-usa.com or (800) 878-5510 to schedule analysis in BEACON's laboratory.

B. Inventory the contents of the kit *before going to the field*, check items against the enclosed list to verify and familiarize. The components are thoroughly cleaned prior to shipment. Conduct inventory without opening the plastic bags. Note that <u>Trip Blanks</u> are to remain sealed throughout the Survey.

C. Prior to returning the Kit to BEACON, verify the caps are tight on each Passive Soil-Gas (PSG) Sampler, Samplers are individually bagged and sealed in the small Sampler Bags, and packed together in the larger Return Shipment Bag, containing an adsorbent pak.

D. Upon completion of the survey, fill in the <u>Chain-of-Custody Form</u> with the following information: (i) Field Sample IDs, (ii) the name and contact phone number of the person submitting the samples, (iii) the unique number of the custody seal that will be used, and (iv) signature and date of person relinquishing samples. Return the <u>Chain-of-Custody Form</u> with the Field Kit to BEACON. Retain photocopies or photographs for your record. Next, pack the Samplers in their own 3x4 white labeled bag & put those in a return shipment bag (*Please label the 3x4 bags*), containers, and requisite documentation (in a protective bag) in the Field Kit.

Note: Place the Return Shipment Bag, containing the individually bagged PSG Samplers, in the upper tray and place the tools in the lower compartment of the Kit to avoid Sampler damage. Include one trip blank with each Return Shipment Bag containing samplers.

Affix the tug-tight custody seal to the latch on the Field Kit. Pack kit in its original cardboard shipping container, attach the provided return label, and relinquish the package to the nearest Fedex pickup location.

NOTE: DO NOT USE STYRENE PEANUTS, NEWSPAPER, OR OTHER PACKING MATERIALS THAT MAY CONTAMINATE THE SAMPLES. AVOID SMOKING WHILE HANDLING SAMPLERS.

II. <u>Contents</u>

A. This Field Kit contains the components needed for a **45**-point soil-gas survey, plus **2** trip blanks (labeled **Trip-1 and Trip-2**, not to be opened), **4** extra Samplers for use in the event of breakage or accidental contamination, and **4** extra transport vials provided in case a Sampler Vial breaks during retrieval. **Do not open bags until deployment.**

Code/	Item	Quantity
(1)	PASSIVE SOIL-GAS SAMPLERS (Orange labels)	49
(2)	TRIP BLANKS (Blue labels)	2
(3)	EXTRA TRANSPORT VIALS (Green labels)	4
(4)	SAMPLING CAPS (in container)	50
(5)	CAP STORAGE CONTAINERS	1
(6)	GAUZE CLOTHS	55
(7)	3" x 4" PLASTIC SAMPLER BAGS (for return shipment of samples)	60
(8)	12" LENGTHS OF PIPE	49
(9)	12" x 12" PLASTIC RETURN SHIPMENT BAG	3
(10)	WIRE CUTTERS	1
(11)	PIPE CUTTER	1
(12)	VISE GRIPS	1
(13)	TAPPING DOWEL	1
(14)	FEDEX RETURN LABEL	1

- B. In addition to the materials found in the kit, field teams will need:
 - NITRILE GLOVES
 - CLEAN TOWEL
 - HAMMER
 - ELECTRIC ROTARY HAMMER DRILL WITH: ½"-DIAMETER BIT WITH AT LEAST 36 INCHES OF CUTTING LENGTH and 1¼" to 1½" DIAMETER BIT WITH AT LEAST 12 INCHES OF CUTTING LENGTH
 - PIPE WRENCH (to dislodge drill bits should they become stuck)
 - BALL-POINT PEN and CLIPBOARD
 - PIN FLAGS, WOODEN STAKES, or OTHER LOCATION MARKERS
 - SMALL SCREWDRIVER or SCRATCH AWL
 - FLAGGING TAPE
 - BOX OF ALUMINUM FOIL
- C. Additional materials necessary only for deployment through asphalt or concrete:

Note: Do not use pre-mixed patching compounds. They contain solvents.

- DRY CONCRETE MORTAR MIX and ASSOCIATED EQUIPMENT (for temporary patching of the sample holes) including:
- SMALL PAIL, WATER, SMALL PLASTIC PUTTY KNIFE
- CHISEL or SCREWDRIVER (to remove the temporary patch)
- ASPHALT COLD PATCH or CEMENT (for final repair of the sample holes)

III. <u>Instructions</u>

A. GENERAL:

Deployment and retrieval of Samplers requires only one person. Separate step-by-step procedures are detailed below for sampling through vegetation or bare soils and areas covered by asphalt, concrete, or gravel. Keep exposure of sample cartridges to ambient air to a minimum.

Note: Do not deploy Samplers within 10 feet of a monitoring well, penetrometer, hydropunch shaft, or other intrusive sampling apparatus that potentially creates a preferential pathway for gases.

REMEMBER: TRIP BLANKS ARE TO REMAIN CLOSED.

B. SAMPLER DEPLOYMENT:

Duplicates:

Duplicate analysis can be performed on/for any field sample because each sampler contains two sets of adsorbent cartridges. To select field sample duplicates, note them on the CoC; a second (co-located) sample is not necessary. Add a second entry to the CoC with the field sample ID followed by "D" or "Dup" (i.e., PSG-08-Dup is the duplicate for PSG-08). There is an additional per sample charge for analysis of any duplicates.

Vegetation or Bare Soils:

1. At each survey point, clear vegetation as necessary and, using a hammer drill and drill bit, create a $1\frac{1}{4}$ "- to $1\frac{1}{2}$ "-diameter hole approximately 12-14 inches deep. Using the $\frac{1}{2}$ " drill bit, extend the hole to a three-foot depth.

Note: In areas of very organic topsoil or landscaped areas (i.e., mulched areas, gardens, etc.) it is imperative to get beneath the organic soil layer to the underlying soil below.

- 2. When the holes have been drilled, take a 12-inch length of 1"-diameter metal pipe and lower it into the sample hole, being careful not to touch the inside of the pipe. Any portion of pipe above grade is cut flush with the ground surface, using the pipe cutter. With the tapping dowel and a hammer, push or tap the pipe one inch into the base of the drilled hole (see **attached figure**).
- 3. Remove one of the Samplers (a glass vial containing *two sets of hydrophobic* adsorbent cartridges) and unwind the retrieval wire wrapped around it. Holding the capped end of the vial in one hand, pull the wire tight (to straighten it) with the other hand. Remove the solid cap on the Sampler Vial and replace it with a Sampling Cap (a one-hole cap with a screen meshing insert). Place the solid cap in the Field Kit.

Note: At each sampling location, verify that the (black) sampling cap is on the vial before installing the Sampler.

4. Lower the Sampler, open-end down, into the metal pipe approximately four inches so that the retrieval wire sticks out of the hole. Cover the open end of the pipe with a balled up wad of aluminum foil, pressing it tightly on top of the pipe with the tapping dowel. Next, cover the hole to grade with local soils or sand, leaving the end of the wire exposed above the surface of the ground. Use a hammer to collapse the soils above the Sampler. Coil the wire and lay it flat on the ground surface. Place the solid cap in the Cap Storage Container. Mark the sample location with a pin flag or wooden stake.

- 5. Close the Field Kit. Record on the Chain-of-Custody: (a) sample-point number; (b) date/time of emplacement (to nearest minute); (c) other relevant information (*e.g.*, soil type, vegetation, proximity to potential source areas). Mark the sample location and take detailed notes (*i.e.*, compass bearings and distances from fixed reference points).
- 6. Move to next location.
- 7. After installing all field samples; place the Trip Blank in a 3" x 4" Sampler Bag. Store the bagged Trip Blank in the "Return Shipment" bags until retrieval, with one (1) Trip Blank in each Return Shipment bag.

Concrete, Asphalt, or Gravel Covered Areas:

1. At each survey point, drill a 1¹/₄"- to 1¹/₂"-diameter hole through the asphalt/concrete/gravel to bare soil using a rotary hammer drill or comparable equipment. This hole should be approximately 12-14 inches deep.

Note: When one person is performing fieldwork, it is often more efficient to drill all sample-point holes before beginning Sampler deployment.

- 2. When the hole through concrete/asphalt/gravel has been completed, using the ½" drill bit, extend the hole to a three-foot depth. Next, take a 12-inch length of 1"-diameter metal pipe and lower it into the sample hole, being careful not to touch the inside of the pipe. Any portion of pipe above grade is cut flush with the ground surface, using the pipe cutter. Use the tapping dowel and a hammer to push or tap the pipe one inch into the base of the drilled hole (see **attached figure**).
- 3. Remove one of the Samplers (a glass vial containing *two sets of hydrophobic* adsorbent cartridges) and unwind the retrieval wire wrapped around it. Holding the capped end of the vial in one hand, pull the wire tight (to straighten it) with the other hand. Remove the white solid cap on the Sampler Vial. Place the solid cap in the Field Kit and screw a black Sampling Cap (a one-hole cap with a screen meshing insert) on the vial.

Note: At each sampling location, verify that the (black) sampling cap is on the vial before installing the Sampler.

4. Lower the Sampler, open-end down, into the metal pipe approximately four inches.

<u>If sampling through asphalt or concrete</u>, bend the end of the wire over the top of the pipe so that the coil of wire hangs over the top and outside of the pipe. Next, plug the top of the hole with a wad of aluminum foil. Using the tapping dowel, push down the aluminum foil so it forms a seal on the metal pipe and rests ¹/₄" below the surfacing. Cover the hole to grade with a ¹/₄" thick concrete patch. [Note: A ¹/₄" thick patch is all that is required. If it is thicker it will be difficult to remove during retrieval.] Next, place the solid cap in the Cap Storage Container.

<u>If sampling through gravel</u>, extend the retrieval wire out of the pipe and plug the pipe with a wad of aluminum foil. Using the tapping dowel, push down the aluminum foil so it forms a seal on the metal pipe. Bend the wire over the aluminum foil plug and while the wire is extended out of the hole, cover the aluminum foil with local soil or sand. **Coil the wire and lay it flat on the ground surface.** Next, place the solid cap in the Cap Storage Container.

<u>If a hole deeper than 12 inches is created</u>, it will be necessary to use more than one wad of aluminum foil. In these situations, extend the wire out of the pipe. While holding onto the wire, plug the top of the pipe and hole loosely with as many wads as needed. Before inserting the last wad of foil, bend the wire so it rests below the uppermost wad of foil. This will make it easier to retrieve the Sampler.

- 5. Close the Field Kit. Record on the Chain-of-Custody: (a) sample-point number; (b) date and time of emplacement (to nearest minute); (c) type of surfacing and approximate thickness; and (d) other relevant information (*e.g.*, surfacing material, proximity to potential source areas). Mark the sample location and take detailed notes (*i.e.*, compass bearings and distances from fixed reference points).
- 6. Move to next location.
- 7. After installing all field samples place the Trip Blank in a 3" x 4" Sampler Bag. Store the bagged Trip Blank in the "Return Shipment" bags until retrieval, with one (1) Trip Blank in each Return Shipment bag.

C. SAMPLER RETRIEVAL:

Prior to retrieving samples, seal each Trip Blank in a 3"x4" Sampler Bag, and place the bagged Trip Blank in a separate larger bag marked "Return Shipment Bag." Include one trip blank with each Return Shipment Bag. Stow the sampler blocks, with the Transport vials and extra samplers, in the lower compartment of the kit. The sampler blocks are to be returned to BEACON's lab along with the samples.

Duplicates:

Duplicate analysis can be performed on/for any field sample because each sampler contains two sets of adsorbent cartridges. To select field sample duplicates, note them on the CoC; a second (co-located) sample is not necessary. Add a second entry to the CoC with the field sample ID followed by "D" or "Dup" (i.e., PSG-08-Dup is the duplicate for PSG-08). There is an additional per sample charge for analysis of any duplicates.

Vegetation or Bare Soils:

- 1. At each sample location open the Field Kit and place it and the wire cutters within easy reach. Remove a square of gauze cloth and place it and a clean towel on the open Kit. Remove a solid cap from the Cap Storage Container and place it on the Kit.
- 2. Remove the aluminum foil plug, using vise grips and the scratch awl or small screwdriver and retrieve the Sampler from the hole.
- 3. Hold the Sampler upright; clean the sides of the vial with the clean towel (especially close to the Sampling Cap). Remove the Sampling Cap, cut all wire from the vial with the wire cutters, and clean the vial threads completely with the gauze cloth.

Note: Remove all wire to ensure a tight cap seal on the vial.

4. Firmly screw the solid cap on the Sampler Vial and clean the vial completely with the gauze cloth. Use a **ballpoint pen** to record the sample number, corresponding to the sample location, on the cap's label.

Note: Do not use a Sharpie marker.

- 5. Place the sealed and labeled Sampler Vial in the smaller 3" x 4" plastic Sampler Bag and record the sample number on the white block using a ballpoint pen. Then place the individually bagged and labeled sampler into the larger bag labeled "Return Shipment Bag."
- Note: Each Sampler must be individually bagged and placed in a Return Shipment Bag with approximately 23 samplers and one trip blank per bag. If you know or suspect some sample(s) collected unusually high levels of contaminants, separately place these sample(s) in the extra bag provided.
- 6. Record on the Chain-of-Custody: (a) date and time of retrieval (to nearest minute); and (b) any other relevant information.
- 7. After all samples have been retrieved, verify that the caps on each Sampler are sealed tightly and that the seals on the Sampler Bags are closed. Verify all Samplers are stored in the Return Shipment Bag, containing an adsorbent pak. Seal the Return Shipment Bag and place it in the upper tray of the Field Kit, and place the provided tools and materials in the lower compartment of the Field Kit.

Note: Do not return use sampling caps, used pipe, or the wire with the Field Kit as they may bias the samplers. Return *all* the other materials and equipment (blocks, extra samplers, tools, containers, *etc.*).

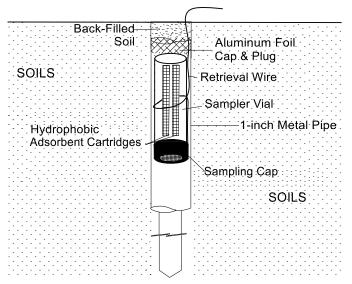
- 8. Cover sampling holes to grade with surrounding soil, as necessary.
- 9. Affix the tug-tight custody seal to the latch on the Field Kit. Pack kit in its original cardboard shipping container, attach the provided return label, and relinquish the package to the nearest Fedex pickup location.

Asphalt, Concrete, or Gravel:

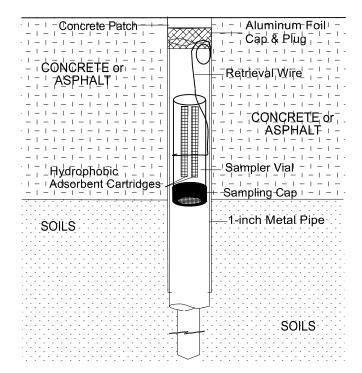
- 1. At each sample point covered by gravel, clear away the soil or sand to expose the aluminum-foil plug. For those locations covered by asphalt or concrete, use a small chisel and hammer to remove the concrete patch to expose the aluminum foil.
- 2. Next, open the Field Kit; place it and the wire cutters within easy reach. Remove a square of gauze cloth and place it and a clean towel on the open Kit. Remove a solid cap from the Cap Storage Container and place it on the Kit, also.
- 3. While securely holding onto the retrieval wire, remove the aluminum-foil plug, using the scratch awl or small screwdriver, as necessary. Holding the Sampler upright, clean the sides of the vial with the clean towel (especially close to the Sampling Cap). Remove the Sampling Cap, cut all the wire from the vial with the wire cutters, and clean the vial threads completely with gauze cloth.

Note: Remove all wire to ensure a tight cap seal on the vial.

4. Firmly screw the solid cap on the Sampler Vial and clean the vial completely with the gauze cloth. With a **ballpoint pen** record the sample number, corresponding to the sample location, on the cap's label.


Note: Do not use a Sharpie marker.

- 5. Place the sealed and labeled Sampler Vial in the smaller 3" x 4" plastic Sampler Bag and record the sample number on the white block using a ballpoint pen. Then place the individually bagged and labeled sampler into the larger bag labeled "Return Shipment Bag."
- Note: Each Sampler must be individually bagged and placed in a Return Shipment Bag with approximately 23 samplers and one trip blank per bag. If you know or suspect some sample(s) collected unusually high levels of contaminants, separately place these sample(s) in the extra bag provided.
- 6. Record on the Chain-of-Custody: (a) date and time of retrieval (to nearest minute); and (b) any other relevant information.
- 7. After all samples have been retrieved, verify that the caps on each Sampler are sealed tightly and that the seals on the Sampler Bags are closed. Verify that all Samplers are stored in the Return Shipment Bag, containing an adsorbent pak. Seal the Return Shipment Bag and place it in the upper tray of the Field Kit, and place the provided tools and materials in the lower compartment of the Field Kit.
- Note: Do not return used sampling caps, used pipe, or the wire with the Field Kit as they may bias the samplers. Return *all* the other materials and equipment (blocks, extra samplers, tools, containers, *etc.*).
- 8. Fill sampling holes to grade with an asphalt cold patch or cement.
- 9. Affix the tug-tight custody seal to the latch on the Field Kit. Pack kit in its original cardboard shipping container, attach the provided return label, and relinquish the package to the nearest Fedex pickup location.



BEACON'S PASSIVE SOIL-GAS SAMPLER

DEPLOYMENT THROUGH SOILS

DEPLOYMENT THROUGH AN ASPHALT/CONCRETE CAP

Please, remember:

- □ Remove all wire from the sampler vials
- □ Label, seal, and individually bag Soil-Gas Samplers in 3"x4" bags provided, with all the samples in the larger bag marked "Return Shipment" with approximately 30 Samplers plus a Trip Blank in each bag
- □ Include the signed and dated Chain-of-Custody Form
- □ Return all tools (including wooden blocks and all containers)
- □ Return any unused pipe
- \Box Use the blue numbered tug tight custody seal on the front of the Kit
- □ Only use approved packaging materials (*i.e.*, no Styrofoam peanuts, etc.)
- □ E-mail a CAD version of the Site Map showing soil-gas sample locations to Ryan Schneider at BEACON (<u>ryan.schneider@beacon-usa.com</u>)
- □ Notify BEACON's laboratory that samples are being returned

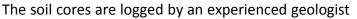
THE FOLLOWING TOOLS WERE INCLUDED WITH YOUR FIELD KIT(S).

PLEASE CHECK-OFF ($\sqrt{}$) IN THE COLUMN BELOW TO VERIFY THAT THE TOTAL NUMBER OF EACH TOOL HAS BEEN PACKAGED IN THE KIT(S) FOR RETURN SHIPMENT.

Tool	Number	Returned
TAPPING DOWELS	1	
WIRE CUTTERS	1	
PIPE CUTTER	1	
VISE GRIPS	1	
UNUSED METAL PIPE		

Please return any <u>unused</u> pipes included in the Field Kit; however, do not return any of the used pipes.

THANK YOU!


Hydraulic Driven Probe Sampling

WEBER, HAYES & ASSOCIATES

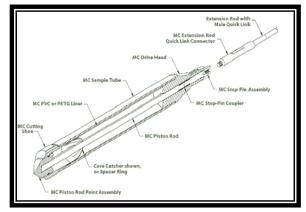
FIELD METHODOLOGY FOR: HYDRAULIC DRIVEN PROBES

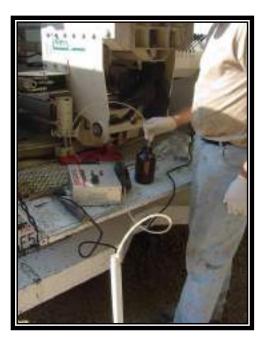
Using Macro-Core[®], Large Bore[®] or Dual Tube[®] Hydraulic Driven Probes

Direct push exploratory borings are "drilled" with a Hydraulic Driven Probe drill rig, which hydraulically vibrates and drives steel probes into the soil. This sampling technology has the ability for either continuous or discrete sampling using a 4-foot long nickel-plated sampling probes fitted with clear acetate liners. During coring operations, the sampler remains open as it is driven into undisturbed soil over its entire 4-foot sampling interval.

using the Unified Soil Classification System (USCS), noting in particular, the lithology of the soils, moisture content, and any unusual odor or discoloration. Relatively undisturbed soil samples are obtained for both lithologic logging and laboratory analysis. A portion of individual soil

cores are stored in a sealed plastic bags for field screening of hydrocarbons and/or volatile organic compounds by an Photoionization Detector (PID). Vapor readings in parts per million (ppm) are recorded on the boring logs. The PID is also used during drilling for monitoring the work area for site safety.


All drilling equipment is decontaminated prior to arriving onsite to prevent possible transfer of contamination from another site. The sampling probe and all other soil sampling equipment are thoroughly cleaned between each borehole by washing in a Liqui-Nox or Alconox solution followed by a double rinsing with distilled water to prevent the transfer of contamination.


After drilling, all exploratory boreholes are grouted with continuous pour neat cement grout from the bottom of the borehole to the ground surface.

Samples Targeted for Laboratory Analysis:

Soil samples targeted for laboratory analysis are

immediately cut from the acetate sample liner and protected at both ends with Teflon tape, sealed with non-reactive caps, taped, labeled, placed in a plastic ZipLock baggie, and immediately stored in an insulated container chilled to a temperature of 4 degree Celsius. Soil samples selected for Volatile Organic Compound (VOC) analysis will follow field preservation protocols according to EPA Method 5035, as described in DTSC's *Guidance Document for the Implementation of United States Environmental Protection Agency Method* 5035:

Methodologies for Collection, Preservation, Storage, and Preparation of Soils to be Analyzed for Volatile Organic Compounds, dated November 2004.

Groundwater samples are collected after temporary PVC casing is placed in the hole and at least one borehole volume is purged and groundwater is visually observed to be free of sediment. Relatively representative groundwater samples are either: 1) collected with a peristaltic pump and dedicated polyethylene tubing and dispensed directly into containers specifically prepared for the analyses (groundwater encountered at depths of less than 27 feet bgs) or 2) collected by mechanically lifting groundwater through a clean stainless steel foot valve and dedicated polyethylene and dispensed directly into containers specifically prepared for the analyses (groundwater through a clean stainless steel foot valve and dedicated polyethylene and dispensed directly into containers specifically prepared for the analyses (groundwater encountered at depths greater than 27 feet bgs where a peristaltic pump cannot be used). Samples being analyzed for dissolved metals will be preserved and acidified by the testing laboratory following their receipt of samples. Once collected, groundwater sample containers are placed in ZipLock bags and are stored in an insulated container chilled to a temperature of 4 degree Celsius.

All samples are transported in chilled coolers to a State-certified laboratory under appropriate chain-of-custody documents. Soil samples that may be put on "hold" for potential future analysis will be stored in a dedicated sample freezer, be frozen, and stored under chain-of-custody documentation. Hold times will be confirmed with the testing laboratory to ensure that potential analysis of any "hold" samples will be analyzed within the laboratory hold times.

Active Soil Gas Sampling

WEBER, HAYES & ASSOCIATES

Field Methodology for Active Soil Gas Sampling

Active soil gas / soil vapor (we use the terms interchangeably) sampling is conducted in general accordance with the procedures outlined in the CalEPA's/DTSC/LARWQCB/SFRWQCB Advisory – Active Soil Gas Investigations (July 2015)¹, and the DTSC/CalEPA's final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance) (October 2011). We use the terms soil gas and soil vapor interchangeably. The field methodology for active soil gas/vapor sampling entails:

- Constructing Soil Gas Sample Points/Probes
- Setting up the sampling and leak testing equipment; and
- Soil Vapor Sampling

Constructing & Decommissioning Soil Vapor Sample Points/Probes

Soil vapor sample points can be either semi-permanent or temporary. A semi-permanent sample probe is constructed with a secure surface completion consisting of bolt-down flush-mounted well vault so it can be reused. A field geologist or engineer logs the soils encountered using the Unified Soil Classification System (USCS), unless the site is already well characterized geologically.

<u>Shallow Soil Vapor Probe</u>: The soil vapor/gas probe is installed to the target sampling depth via a Geo-Probe drill rig, which hydraulically drives and vibrates steel probes into the soil. The soil is cored out using a 4-foot long nickel-plated sampling barrel fitted with a clear acetate liner. During coring operations, the sample barrel remains open as it is driven into undisturbed soil over its entire 4-foot sampling interval. Alternatively, the soil gas probe borehole can be created via a hollow stem auger or hand auger. Shallow soil gas / soil vapor sample depths

Shallow soil vapor probe installation via GeoProbe drill rig

will be no less than 5 feet deep (if possible) in order to avoid breakthrough of ambient air from the surface. Shallow and deeper soil gas points are constructed in a similar manner. Once the probe hole is cored to the desired sample depth, a length of 3/16–inch inner diameter Teflon or Nylaflo tubing (Teflon is preferred, especially if testing for naphthalene) having a porous media tip (i.e., ceramic filter stone) attached at the down-hole end of the tubing is inserted through a

^{1:} https://www.dtsc.ca.gov/SiteCleanup/upload/VI_ActiveSoilGasAdvisory_FINAL.pdf

1-inch diameter tremie-pipe that is extended down to 6-inches above the base of the borehole. The sample tubing end with the ceramic filter stone is also placed approximately 6-inches above the base of the borehole. A minimum of a one-foot sand pack is emplaced at the base of the borehole (the grain size of the sand pack is larger than the grain size of the adjacent formation), followed by at least one foot of dry granular bentonite. The probe tip is emplaced midway within the sand pack. While the sand pack and granular bentonite is slowly added to the borehole, the tremie-pipe is correspondingly pulled out of the boring (with the bottom of the tremie pipe periodically "tapping" the top surface of sand pack and granular bentonite to ensure that no bridging occurs). The remainder of the borehole is sealed to the ground surface with hydrated bentonite gel for temporary points or neat cement mixed with 1% - 5% bentonite, which are both pre-mixed at the ground surface; this ensures a sound surface seal and/or seal between multi-depth nested probe sample intervals.

<u>Decommissioning Shallow Soil Vapor Points:</u> Following sample collection the vapor probe is properly decommissioned by one of the following regulatory approved techniques:

- The sample tubing is completely removed from the ground surface (if possible) allowing the bentonite gel slurry to flow into the small vertical void thereby sealing the borehole. Subsequently, approximately 6-inches of bentonite slurry is removed below the ground surface and the surface is patched to match the existing grade.
- The sample tubing is properly destroyed by injecting neat cement grout into the tubing via a syringe. The volume of grout injected into the tubing is monitored to ensure that the entire tubing is completely sealed. Subsequently, the tubing is cut off approximately 6-inches below the ground surface and the surface is patched to match the existing grade.
- The vapor probe is properly destroyed by over-drilling the sample tubing and annular seal material. Once the material has been removed, the subsequent borehole is filled with neat cement grout to within about 6-inches of the ground surface and the surface is patched to match the existing grade.

slab. The probe tip is emplaced midway within the sand pack. The remainder of the borehole is sealed to the ground surface with hydrated bentonite for temporary points or hydrated bentonite followed by neat cement for permanent points to ensure a sound surface seal. Permanent points have a flush-mount inert metal fitting for providing a good seal when connecting the above-ground sample tubing and for plugging between sampling events. Following sample collection from a temporary probe the sample tubing is removed and the subsequent void is sealed with hydrated bentonite and the surface is patched with concrete.

Purging

Prior to soil gas sample collection, a purge volume or "dead space volume" will be calculated in order to purge ambient or stagnant air from the sampling system to ensure that collected samples are representative.

Per the procedures outlined in the CalEPA's Advisory, a default of three purge volumes will be extracted prior to sampling. The purge volume consists of approximately three system volumes (i.e. tubing and annular space) of soil gas, while capturing the purge effluent. One system volume is calculated by summing the inner diameter (id) tubing volume (i.e., id area times the length of tubing) and the annular pore space volume (i.e., area of the borehole times the length of sand pack and granular bentonite surrounding the ceramic filter stone tip times an estimated sand-pack pore space volume of 33.8%). The purge rate will be conducted at the same rate soil gas is sampled (approximately 200-mL/min flow). We note that Cal-EPA guidance recommends purging or sampling at rates between 100 to 200-mL/min for soil vapor points at all depths, including sub-slab vapor points, to limit air stripping and to prevent ambient air form diluting the sample. After the specific pre-determined purge volume is removed, a soil vapor/gas sample is collected for laboratory analyses for the site-specific target compounds as discussed below.

Sample Collection

Before purging the appropriate "dead space volume" from the soil vapor/gas probe, the probe seal is allowed to cure and the subsurface is allowed to equilibrate for the appropriate amount of time per the procedures outlined in the CalEPA's Advisory. We note that an equilibration time of 2-hours is required for soil vapor/gas points installed via a direct push drill rig and 48-hours for soil vapor/gas points installed via a hollow stem auger drill rig, hand-auger, or an electric hand rotary hammer drill. Once the appropriate "dead space volume" has been purged, the sample tubing will be attached to a laboratory prepared soil vapor manifold and 1 or 6-liter Summa canister or sorbent sampling media depending on required laboratory analysis. We note that the choice between using a 1-L or 6-L canister is typically dependent on the purpose of the site investigation. However, for soil vapor/gas samples collected at a depth

less than 5-feet, including sub-slab vapor points, a 1-L canister should be used to avoid excessive air removal and to prevent ambient air from entering the sub-surface and sample. When sampling for ambient indoor air, a 6-L canister is nearly always required because of the extremely low detection limits required to meet Indoor Air ESLs. For soil vapor collection, a 1-L canister may be all that is necessary if the site is known to contain high concentrations of contaminants of interest that make achieving low detection limits a secondary concern. In those cases, only a small volume of the 1-L collected is necessary for analysis of both the TO-15 and the TO-3 compounds. However, if a site does not have historical data indicating that it is significantly contaminated, or if multiple analytical runs become necessary to achieve reporting limit/CHHSL/ESL goals, it becomes critical to have a larger initial volume of collected sample. A 6-L volume allows the laboratory to provide the lowest possible detection for the compounds of interest for full list TO-15 while providing enough volume for the additional analysis of individual compounds that may require dilution to bring them within the instrument calibration range. The 6-L volume will provide enough residual sample to analyze for additional contaminants (e.g., EPA Method TO-3) and/or fixed Gases (ASTM D1946) including Helium, which may be used as a tracer or leak check compound in the investigation. A consultation with the selected testing laboratory will be conducted for each investigation to ensure that appropriate sample volumes are obtained.

The following sample collection procedures are followed for each sample collection media:

- The Summa canisters will be supplied by the analytical laboratory with a vacuum of approximately 30-inches of mercury and outfitted with a 200-mL/min flow control valve. The tubing will be connected to the soil vapor manifold and Summa canister using airtight stainless-steel or brass fittings. The flow control valve will then be opened slowly to draw the vapor sample from the target depth.
- Laboratory sorbent media and canister with a vacuum of approximately 30-inches of mercury and outfitted with a 200- mL/min flow control valve or sampling pump (10 to 200 mL/min) will be supplied by the analytical laboratory. The tubing

Sample collection with Summa canisters

Sample collection with sorbent tube

will be connected to the sorbent media sample tube, upstream of the vacuum canister/sample pump/syringe using airtight stainless-steel or brass fittings. The sample

vacuum canister/ pump/syringe will then be activated to draw approximately 1 to 3-L of sample volume for TO-17 analysis from the target depth at a flow rate of 200- mL/min or less per sorbent media sample tube manufacturer and/or laboratory guidelines.

Schematic diagrams of sample configurations for the different sampling media (i.e., Summa canister and sorbent media) and probe construction (i.e., shallow soil and sub-slab) are included as attachments 1, 2, and 3 of this field methodology.

Leak Detection Monitoring

Leak detection monitoring will be conducted during soil gas sampling by applying a tracer compound (i.e., isopropyl alcohol [isopropanol, IPA] or helium) to the sample system connections and bentonite seal. Specifically, a shroud will be used to encapsulate the entire system (i.e., the sample canister and surface bentonite seal) so as to trap the applied tracer compound. The leak detection monitoring configuration is graphically depicted on attachments 1, 2, and 3 of this field methodology. The

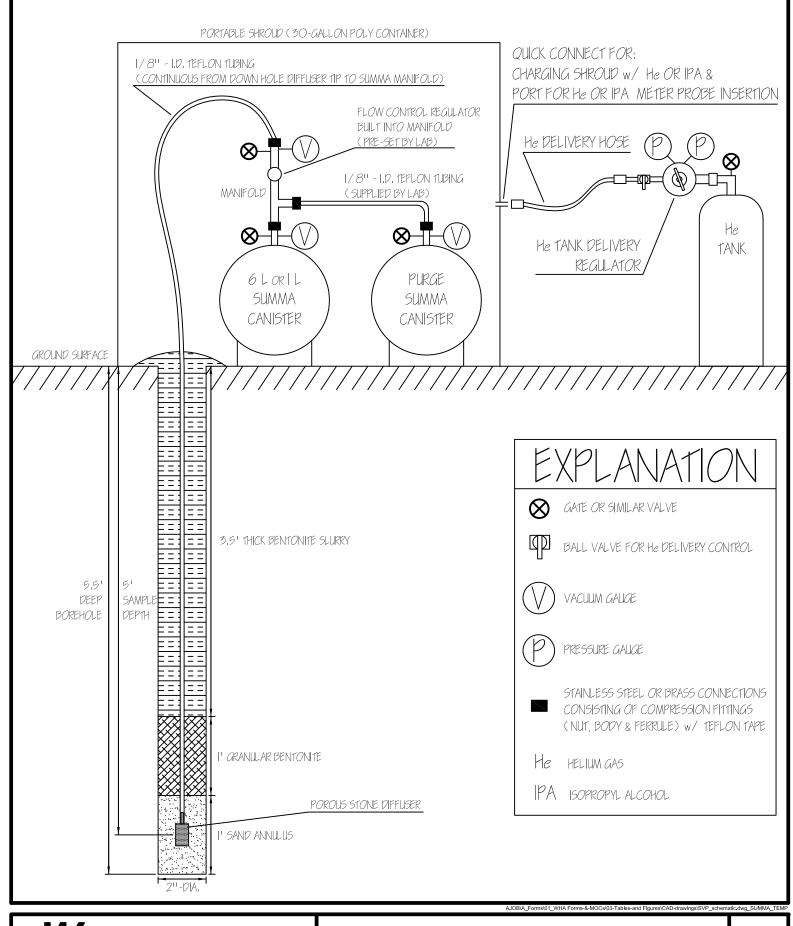
concentration of the leak check compound within

Monitoring leak check compound within shroud during sample collection

the shroud will be monitored periodically throughout the sample collection period with a PID calibrated to the specific tracer gas compound and these values will be recorded into the field notes. The tracer compound (i.e., IPA or helium) is maintained within the shroud at a concentration of approximately two (2) orders of magnitude higher than the detection limit of the field meter used throughout the duration of sample collection. The testing laboratory will screen for this compound in all analyzed air samples when IPA is used. If helium is used the laboratory can screen for this compound if collected in Summa canisters, or the sample effluent after passing through the sorbent media will be field screened for the presence of the helium.

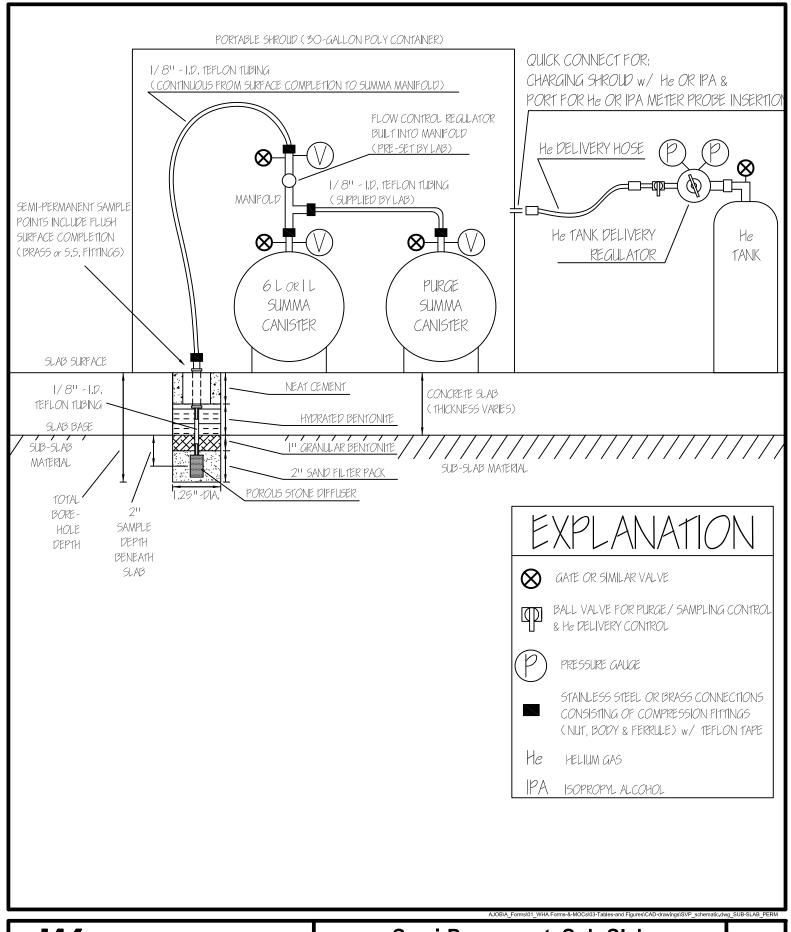
Prior to purging and sample collection, a "shut-in test" is performed to check the above-ground sample system connections downstream from the top of the soil vapor/gas probe, including the laboratory provided sample manifold ("sample train"). The "shut-in test" is completed in the field by closing off all valves to the laboratory provided soil vapor manifold and the soil vapor/gas probe tubing, and subsequently opening the valve to the connected "purge" Summa canister to increase the vacuum in the sample train to a minimum of 30-inches of mercury, at which point the purge canister is closed. Then the vacuum gauge on the sample train is observed for at least 1-minute to confirm it remains stable.

Low Flow Sampling Conditions


January 2020 Revision

A low flow sampling condition is characterized as a condition where the sample probe cannot sustain a flow rate of 100-mL/min for more than three minutes while maintaining an applied vacuum of less than 100-inches of water (or 7.4-inches of mercury). The vacuum applied to the sample probe will be measured and monitored via a vacuum gauge installed between the sample probe and the sample collection flow regulator. If the vacuum measured within the sample probe exceeds 100-inches of water during dead space volume purging, then one of the following sample collection procedures will be employed:

- If the lithology observed during sample probe installation indicates potential for low permeability / low flow conditions a representative soil sample at the soil vapor sample depth will be collected and put on ice for possible laboratory analysis.
- If extreme low flow conditions are observed during purging, excessive time will be
 required to purge and collect a sample. We will contact the regulating agency to confirm
 collecting a purge volume approximating one dead space volume (i.e., volume of the
 sample tube plus the volume of the sand pack pore space and granular bentonite pore
 space surrounding the probe tip) will be evacuated prior to sample collection. Sample
 collection will proceed until the sample probe vacuum equals 100-inches of water. The
 sample system will then be closed off to allow the probe to relax and equilibrate. Over
 time the vacuum will eventually dissipate, the rate of which can be monitored via an inline vacuum gauge installed as described above. Once the vacuum in the sample probe
 has dissipated, sampling will resume as described above. This process will be repeated
 until an adequate sample volume has been obtained for the required laboratory analysis.
- If during low flow sampling as stated above, the sample system when closed off to allow the probe to relax and equilibrate the probe vacuum does not reduce by 13.5 inches of water (1 inch of mercury) in 3-minutes, soil vapor sampling will cease and the previously collected soil sample will be submitted to the laboratory for potential analysis for site specific constituents.


Sample Storage and Transport

Once collected, the soil gas samples are then transported to a State-certified laboratory under appropriate chain-of-custody documentation. Sorbent media are wrapped in foil and placed in individual zip-lock type bags and immediately placed in a chilled cooler (chilled to 4 degrees Celsius) for storage and transport to the testing laboratory. Summa canisters are placed in laboratory provided cardboard boxes and stored at ambient temperature for transport to the testing laboratory.

· Ka

Weber, Hayes & Associates Hydrogeology and EnvIronmental EngIneerIng 120 Westgate Drive, Watsonville, CA 95076 (831)722-3580 Fax (831)722-1159 www.weber-hayes.com Temporary Soil Vapor Probe Construction Details Figure B

Weber, Hayes & Associates Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 95076 (831)722-3580 Fax (831)722-1159 www.weber-hayes.com Semi-Permanent, Sub-Slab Soil Vapor Probe Construction Details

Figure A

Appendix B

State Certified Laboratory Reports

- Soil and Groundwater Analysis Pace Analytical Laboratory
 - Soil Vapor Analysis BC Laboratories, Inc.

Soil and Groundwater Analysis

_

Pace Analytical

WEBER, HAYES & ASSOCIATES

ANALYTICAL REPORT April 10, 2020

Weber, Hayes & Associates - CA

Sample Delivery Group:	L1205565
Samples Received:	04/03/2020
Project Number:	2t009
Description:	Capitola Rd
Site:	1541 CAPITOLA RD SANTA CRUZ
Report To:	Ryan Nyberg
	120 Westgate Drive
	Watsonville, CA 95076

Entire Report Reviewed By: Buan Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace National Statement of the laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

'Ср
² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

TABLE OF CONTENTS

-	*	
	¹ Cp	
	² Tc	
	³ Ss	
	⁴ Cn	
	⁵Sr	
	⁶ Qc	
	⁷ Gl	
	⁸ Al	
	⁹ Sc	

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
GW-1 L1205565-03	8
GW-2 L1205565-04	10
GW-3 L1205565-05	12
GW-4 L1205565-06	14
GW-5 L1205565-07	16
GW-6 L1205565-08	18
SS-2-D3 L1205565-09	20
SS-2-D4.5 L1205565-10	22
SS-2-D12 L1205565-11	24
SS-3-D3 L1205565-12	26
SS-3-D6 L1205565-13	28
SS-3-D12 L1205565-14	30
GW-1-D3 L1205565-15	32
GW-1-D7 L1205565-16	34
GW-1-D12 L1205565-17	36
GW-1-D24 L1205565-18	38
GW-3-D3 L1205565-19	40
GW-3-D6 L1205565-20	42
GW-3-D12 L1205565-21	44
GW-3-D19 L1205565-22	46
GW-4-D3 L1205565-23	48
GW-4-D6 L1205565-24	50
GW-4-D12 L1205565-25	52
GW-4-D23 L1205565-26	54
GW-5-D3 L1205565-27	56
GW-5-D6 L1205565-28	58
GW-5-D12 L1205565-29	60
GW-5-D27 L1205565-30	62
Qc: Quality Control Summary	64
Total Solids by Method 2540 G-2011	64
Volatile Organic Compounds (GC/MS) by Method 8260B	68
GI: Glossary of Terms	83
Al: Accreditations & Locations	84
	05

Sc: Sample Chain of Custody

SDG: L1205565

85

PAGE: 2 of 88

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	JAIVITLE		ANI		01121	
GW-1 L1205565-03 GW			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 19:02	04/04/20 19:02	JCP	Mt. Juliet, TN
GW-2 L1205565-04 GW			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 19:22	04/04/20 19:22	JCP	Mt. Juliet, TN
GW-3 L1205565-05 GW			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 19:42	04/04/20 19:42	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1458412	10	04/09/20 21:03	04/09/20 21:03	ADM	Mt. Juliet, TN
GW-4 L1205565-06 GW			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 20:02	04/04/20 20:02	JCP	Mt. Juliet, TN
GW-5 L1205565-07 GW			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 20:22	04/04/20 20:22	JCP	Mt. Juliet, TN
GW-6 L1205565-08 GW			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1455716	1	04/04/20 20:42	04/04/20 20:42	JCP	Mt. Juliet, TN
SS-2-D3 L1205565-09 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456965 WG1455717	1 1	04/08/20 21:52 04/01/20 00:00	04/08/20 22:08 04/05/20 04:56	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
SS-2-D4.5 L1205565-10 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received date/time 04/03/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1456966	1	04/08/20 21:31	date/time 04/08/20 21:48	KDW	Mt. Juliet, TN

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009 SDG: L1205565

04/

DATE/TIME: 04/10/20 18:37 PAGE: 3 of 88

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

	JAIM LL .					
SS-2-D12 L1205565-11 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 05:34	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
SS-3-D3 L1205565-12 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 05:53	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
SS-3-D6 L1205565-13 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 06:12	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
SS-3-D12 L1205565-14 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 06:31	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-1-D3 L1205565-15 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 06:50	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-1-D7 L1205565-16 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 07:09	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-1-D12 L1205565-17 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1456966	1	04/08/20 21:31	04/08/20 21:48	KDW	Mt. Juliet, TN

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE:

4 of 88

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLES		IARI		ONLI	LAD. MATION
GW-1-D24 L1205565-18 Solid			Collected by Ryan Nyberg	Collected date/time 04/01/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/01/20 00:00	04/08/20 21:48 04/05/20 07:47	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-3-D3 L1205565-19 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456966 WG1455717	1 1	04/08/20 21:31 04/02/20 00:00	04/08/20 21:48 04/05/20 08:06	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-3-D6 L1205565-20 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456967 WG1455717	1 1	04/08/20 21:14 04/02/20 00:00	04/08/20 21:27 04/05/20 08:25	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-3-D12 L1205565-21 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456967 WG1455717	1 1	04/08/20 21:14 04/02/20 00:00	04/08/20 21:27 04/05/20 08:45	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-3-D19 L1205565-22 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456967 WG1455717	1 1	04/08/20 21:14 04/02/20 00:00	04/08/20 21:27 04/05/20 09:04	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-4-D3 L1205565-23 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456967 WG1455717	1 1	04/08/20 21:14 04/02/20 00:00	04/08/20 21:27 04/05/20 09:23	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN
GW-4-D6 L1205565-24 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1456967 WG1455717	1	04/08/20 21:14 04/02/20 00:00	04/08/20 21:27 04/05/20 09:42	KDW BMB	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Tc

Ss

Cn

Sr

Qc

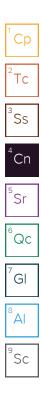
GI

ΆI

Sc

GW-4-D12 L1205565-25 Solid			Collected by Ryan Nyberg	Collected date/time 04/02/20 00:00	Received da 04/03/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	5	
Total Solids by Method 2540 G-2011	WG1456967	1	04/08/20 21:14	04/08/20 21:27	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455717	1	04/02/20 00:00	04/05/20 10:01	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GW-4-D23 L1205565-26 Solid			Ryan Nyberg	04/02/20 00:00	04/03/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1456967	1	04/08/20 21:14	04/08/20 21:27	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455717	1	04/02/20 00:00	04/05/20 10:20	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GW-5-D3 L1205565-27 Solid			Ryan Nyberg	04/02/20 00:00	04/03/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1456967	1	04/08/20 21:14	04/08/20 21:27	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455717	1	04/02/20 00:00	04/05/20 10:39	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GW-5-D6 L1205565-28 Solid			Ryan Nyberg	04/02/20 00:00	04/03/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1456967	1	04/08/20 21:14	04/08/20 21:27	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455731	1	04/02/20 00:00	04/04/20 22:47	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GW-5-D12 L1205565-29 Solid			Ryan Nyberg	04/02/20 00:00	04/03/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1456967	1	04/08/20 21:14	04/08/20 21:27	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1455731	1	04/02/20 00:00	04/04/20 23:06	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GW-5-D27 L1205565-30 Solid			Ryan Nyberg	04/02/20 00:00	04/03/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	-	
			0.4/0.0/0.0.40.04	04/00/20 10:42	KDW	Mt. Juliet, TN
Total Solids by Method 2540 G-2011	WG1456968	1	04/08/20 19:21	04/08/20 19:42	KDW	wit. Juliet, Th

SDG: L1205565


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1205565 DA 04/1 PAGE: 7 of 88

\$

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
Acetone	14.0	J	10.0	50.0	1	04/04/2020 19:02	WG1455716	² T
Acrolein	U	<u></u>	8.87	50.0	1	04/04/2020 19:02	WG1455716	
crylonitrile	U		1.87	10.0	1	04/04/2020 19:02	WG1455716	3
Benzene	0.354	J	0.331	1.00	1	04/04/2020 19:02	WG1455716	ິS
Bromobenzene	U	<u>J4</u>	0.352	1.00	1	04/04/2020 19:02	WG1455716	
Bromodichloromethane	U	<u><u> </u></u>	0.332	1.00	1	04/04/2020 19:02	WG1455716	4
Bromoform	U		0.469	1.00	1	04/04/2020 19:02	WG1455716	
			0.469	5.00	1		WG1455716	5
Bromomethane	U					04/04/2020 19:02		ິS
-Butylbenzene	U		0.361	1.00	1	04/04/2020 19:02	WG1455716	
ec-Butylbenzene	U		0.365	1.00	1	04/04/2020 19:02	WG1455716	6
ert-Butylbenzene	U		0.399	1.00	1	04/04/2020 19:02	WG1455716	
Carbon tetrachloride	U		0.379	1.00	1	04/04/2020 19:02	WG1455716	
Chlorobenzene	U		0.348	1.00	1	04/04/2020 19:02	<u>WG1455716</u>	6
Chlorodibromomethane	U		0.327	1.00	1	04/04/2020 19:02	WG1455716	
Chloroethane	U		0.453	5.00	1	04/04/2020 19:02	WG1455716	8
Chloroform	U		0.324	5.00	1	04/04/2020 19:02	WG1455716	- A
Chloromethane	0.428	J	0.276	2.50	1	04/04/2020 19:02	WG1455716	
2-Chlorotoluene	U		0.375	1.00	1	04/04/2020 19:02	WG1455716	95
l-Chlorotoluene	U		0.351	1.00	1	04/04/2020 19:02	WG1455716	
,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	04/04/2020 19:02	WG1455716	
,2-Dibromoethane	U		0.381	1.00	1	04/04/2020 19:02	WG1455716	
Dibromomethane	U		0.346	1.00	1	04/04/2020 19:02	WG1455716	
,2-Dichlorobenzene	U		0.349	1.00	1	04/04/2020 19:02	WG1455716	
3-Dichlorobenzene	U		0.220	1.00	1	04/04/2020 19:02	WG1455716	
4-Dichlorobenzene	U		0.274	1.00	1	04/04/2020 19:02	WG1455716	
Vichlorodifluoromethane	U		0.551	5.00	1	04/04/2020 19:02	WG1455716	
1-Dichloroethane	U		0.259	1.00	1	04/04/2020 19:02	WG1455716	
,2-Dichloroethane	U		0.361	1.00	1	04/04/2020 19:02	WG1455716	
1-Dichloroethene	U		0.398	1.00	1	04/04/2020 19:02	WG1455716	
is-1,2-Dichloroethene	U		0.260	1.00	1	04/04/2020 19:02	WG1455716	
rans-1,2-Dichloroethene	U		0.396	1.00	1	04/04/2020 19:02	WG1455716	
,2-Dichloropropane	U		0.306	1.00	1	04/04/2020 19:02	WG1455716	
	U		0.352	1.00	1			
,1-Dichloropropene						04/04/2020 19:02	WG1455716	
,3-Dichloropropane	U		0.366	1.00	1	04/04/2020 19:02	WG1455716	
is-1,3-Dichloropropene	U		0.418	1.00	1	04/04/2020 19:02	WG1455716	
rans-1,3-Dichloropropene	U		0.419	1.00	1	04/04/2020 19:02	WG1455716	
2,2-Dichloropropane	U		0.321	1.00	1	04/04/2020 19:02	WG1455716	
Di-isopropyl ether	U		0.320	1.00	1	04/04/2020 19:02	<u>WG1455716</u>	
thylbenzene	U		0.384	1.00	1	04/04/2020 19:02	<u>WG1455716</u>	
lexachloro-1,3-butadiene	U		0.256	1.00	1	04/04/2020 19:02	WG1455716	
sopropylbenzene	U		0.326	1.00	1	04/04/2020 19:02	WG1455716	
-Isopropyltoluene	U		0.350	1.00	1	04/04/2020 19:02	WG1455716	
-Butanone (MEK)	U		3.93	10.0	1	04/04/2020 19:02	WG1455716	
lethylene Chloride	U		1.00	5.00	1	04/04/2020 19:02	WG1455716	
-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	04/04/2020 19:02	WG1455716	
lethyl tert-butyl ether	U		0.367	1.00	1	04/04/2020 19:02	WG1455716	
laphthalene	U		1.00	5.00	1	04/04/2020 19:02	WG1455716	
-Propylbenzene	U		0.349	1.00	1	04/04/2020 19:02	WG1455716	
tyrene	U		0.307	1.00	1	04/04/2020 19:02	WG1455716	
,1,1,2-Tetrachloroethane	U		0.385	1.00	1	04/04/2020 19:02	WG1455716	
1,2,2-Tetrachloroethane	U		0.130	1.00	1	04/04/2020 19:02	WG1455716	
1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	04/04/2020 19:02	WG1455716	
etrachloroethene	4.64		0.372	1.00	1	04/04/2020 19:02	WG1455716	
oluene	0.614	J	0.372	1.00	1	04/04/2020 19:02	WG1455716	
,2,3-Trichlorobenzene	U.014	5	0.412	1.00	1	04/04/2020 19:02	WG1455716	
,2,4-Trichlorobenzene								
	U		0.355	1.00	1	04/04/2020 19:02	WG1455716	

Weber, Hayes & Associates - CA

PROJECT: 2t009 SDG: L1205565

DATE/TIME: 04/10/20 18:37 PAGE: 8 of 88

斁

Â

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 19:02	WG1455716	² T
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 19:02	WG1455716	
Trichloroethene	U		0.398	1.00	1	04/04/2020 19:02	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 19:02	WG1455716	[°] S
1,2,3-Trichloropropane	U	<u>J4</u>	0.807	2.50	1	04/04/2020 19:02	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 19:02	WG1455716	⁴ C
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 19:02	WG1455716	
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 19:02	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 19:02	WG1455716	⁵ S
Xylenes, Total	U		1.06	3.00	1	04/04/2020 19:02	WG1455716	
(S) Toluene-d8	113			80.0-120		04/04/2020 19:02	WG1455716	⁶ C
(S) 4-Bromofluorobenzene	108			77.0-126		04/04/2020 19:02	WG1455716	
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/04/2020 19:02	WG1455716	⁷ G

\$

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
Acetone	U		10.0	50.0	1	04/04/2020 19:22	WG1455716	
crolein	U	<u>J4</u>	8.87	50.0	1	04/04/2020 19:22	WG1455716	L
crylonitrile	U	_	1.87	10.0	1	04/04/2020 19:22	WG1455716	3
Benzene	U		0.331	1.00	1	04/04/2020 19:22	WG1455716	
Bromobenzene	U	<u>J4</u>	0.352	1.00	1	04/04/2020 19:22	WG1455716	
Bromodichloromethane	U		0.380	1.00	1	04/04/2020 19:22	WG1455716	2
Bromoform	U		0.469	1.00	1	04/04/2020 19:22	WG1455716	
Promomethane	U		0.866	5.00	1	04/04/2020 19:22	WG1455716	
-Butylbenzene	U		0.361	1.00	1	04/04/2020 19:22	WG1455716	
	U		0.365	1.00	1			
ec-Butylbenzene	U					04/04/2020 19:22	WG1455716	e
ert-Butylbenzene			0.399	1.00	1	04/04/2020 19:22	WG1455716	
Carbon tetrachloride	U		0.379	1.00	1	04/04/2020 19:22	WG1455716	
Chlorobenzene	U		0.348	1.00	1	04/04/2020 19:22	WG1455716	ŕ
Chlorodibromomethane	U		0.327	1.00	1	04/04/2020 19:22	WG1455716	
Chloroethane	U		0.453	5.00	1	04/04/2020 19:22	WG1455716	8
Chloroform	U		0.324	5.00	1	04/04/2020 19:22	WG1455716	
Chloromethane	U		0.276	2.50	1	04/04/2020 19:22	WG1455716	L
-Chlorotoluene	U		0.375	1.00	1	04/04/2020 19:22	WG1455716	(
-Chlorotoluene	U		0.351	1.00	1	04/04/2020 19:22	WG1455716	
2-Dibromo-3-Chloropropane	U		1.33	5.00	1	04/04/2020 19:22	WG1455716	
2-Dibromoethane	U		0.381	1.00	1	04/04/2020 19:22	WG1455716	
Dibromomethane	U		0.346	1.00	1	04/04/2020 19:22	WG1455716	
,2-Dichlorobenzene	U		0.349	1.00	1	04/04/2020 19:22	WG1455716	
3-Dichlorobenzene	U		0.220	1.00	1	04/04/2020 19:22	WG1455716	
4-Dichlorobenzene	U		0.274	1.00	1	04/04/2020 19:22	WG1455716	
ichlorodifluoromethane	U		0.551	5.00	1	04/04/2020 19:22	WG1455716	
1-Dichloroethane	U		0.259	1.00	1	04/04/2020 19:22	WG1455716	
2-Dichloroethane	U		0.361	1.00	1	04/04/2020 19:22	WG1455716	
1-Dichloroethene	U		0.398	1.00	1	04/04/2020 19:22	WG1455716	
is-1,2-Dichloroethene	U		0.260	1.00	1	04/04/2020 19:22	WG1455716	
rans-1,2-Dichloroethene	U		0.396	1.00	1	04/04/2020 19:22	WG1455716	
,2-Dichloropropane	U		0.306	1.00	1	04/04/2020 19:22	WG1455716	
1-Dichloropropene	U		0.352	1.00	1	04/04/2020 19:22	WG1455716	
	U		0.366	1.00	1	04/04/2020 19:22		
,3-Dichloropropane					1		WG1455716	
is-1,3-Dichloropropene	U		0.418	1.00	1	04/04/2020 19:22	WG1455716	
rans-1,3-Dichloropropene	U		0.419	1.00	1	04/04/2020 19:22	WG1455716	
,2-Dichloropropane	U		0.321	1.00	1	04/04/2020 19:22	WG1455716	
i-isopropyl ether	0.417	J	0.320	1.00	1	04/04/2020 19:22	WG1455716	
thylbenzene	U		0.384	1.00	1	04/04/2020 19:22	WG1455716	
lexachloro-1,3-butadiene	U		0.256	1.00	1	04/04/2020 19:22	WG1455716	
sopropylbenzene	U		0.326	1.00	1	04/04/2020 19:22	WG1455716	
-Isopropyltoluene	U		0.350	1.00	1	04/04/2020 19:22	WG1455716	
-Butanone (MEK)	U		3.93	10.0	1	04/04/2020 19:22	WG1455716	
lethylene Chloride	U		1.00	5.00	1	04/04/2020 19:22	WG1455716	
-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	04/04/2020 19:22	WG1455716	
lethyl tert-butyl ether	U		0.367	1.00	1	04/04/2020 19:22	WG1455716	
laphthalene	U		1.00	5.00	1	04/04/2020 19:22	WG1455716	
-Propylbenzene	U		0.349	1.00	1	04/04/2020 19:22	WG1455716	
tyrene	U		0.307	1.00	1	04/04/2020 19:22	WG1455716	
1,1,2-Tetrachloroethane	U		0.385	1.00	1	04/04/2020 19:22	WG1455716	
1,2,2-Tetrachloroethane	U		0.130	1.00	1	04/04/2020 19:22	WG1455716	
1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	04/04/2020 19:22	WG1455716	
etrachloroethene	161		0.372	1.00	1	04/04/2020 19:22	WG1455716	
oluene	U		0.372	1.00	1	04/04/2020 19:22	WG1455716	
,2,3-Trichlorobenzene	U		0.412	1.00	1			
						04/04/2020 19:22	WG1455716	
,2,4-Trichlorobenzene	U		0.355	1.00	1	04/04/2020 19:22	WG1455716	

Weber, Hayes & Associates - CA

2t009

SDG: L1205565

04/10/20 18:37

PAGE: 10 of 88

製

Â

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 19:22	WG1455716	² Tc
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 19:22	WG1455716	
Trichloroethene	U		0.398	1.00	1	04/04/2020 19:22	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 19:22	WG1455716	³ Ss
1,2,3-Trichloropropane	U	<u>J4</u>	0.807	2.50	1	04/04/2020 19:22	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 19:22	WG1455716	⁴ Cr
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 19:22	WG1455716	C
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 19:22	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 19:22	WG1455716	⁵ Sr
Xylenes, Total	U		1.06	3.00	1	04/04/2020 19:22	WG1455716	
(S) Toluene-d8	116			80.0-120		04/04/2020 19:22	WG1455716	⁶ Q0
(S) 4-Bromofluorobenzene	104			77.0-126		04/04/2020 19:22	WG1455716	
(S) 1,2-Dichloroethane-d4	99.5			70.0-130		04/04/2020 19:22	WG1455716	⁷ Gl

1

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
Acetone	U		10.0	50.0	1	04/04/2020 19:42	WG1455716	2
Acrolein	U	J4	8.87	50.0	1	04/04/2020 19:42	WG1455716	L
Acrylonitrile	U		1.87	10.0	1	04/04/2020 19:42	WG1455716	3
Benzene	U		0.331	1.00	1	04/04/2020 19:42	WG1455716	J
Bromobenzene	U	<u>J4</u>	0.352	1.00	1	04/04/2020 19:42	WG1455716	
Bromodichloromethane	U		0.380	1.00	1	04/04/2020 19:42	WG1455716	4
Bromoform	U		0.469	1.00	1	04/04/2020 19:42	WG1455716	
Bromomethane	U		0.866	5.00	1	04/04/2020 19:42	WG1455716	5
n-Butylbenzene	U		0.361	1.00	1	04/04/2020 19:42	WG1455716	
sec-Butylbenzene	U		0.365	1.00	1	04/04/2020 19:42	WG1455716	
ert-Butylbenzene	U		0.399	1.00	1	04/04/2020 19:42	WG1455716	6
Carbon tetrachloride	U		0.379	1.00	1	04/04/2020 19:42	WG1455716	
Chlorobenzene	U		0.348	1.00	1	04/04/2020 19:42	WG1455716	7
Chlorodibromomethane	U		0.348	1.00	1	04/04/2020 19:42	WG1455716	,
Chloroethane			0.327	5.00	1			
	U					04/04/2020 19:42	WG1455716	8
Chloroform	U		0.324	5.00	1	04/04/2020 19:42	WG1455716	
Chloromethane	U		0.276	2.50	1	04/04/2020 19:42	WG1455716	
-Chlorotoluene	U		0.375	1.00	1	04/04/2020 19:42	WG1455716	9
-Chlorotoluene	U		0.351	1.00	1	04/04/2020 19:42	WG1455716	L
,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	04/04/2020 19:42	<u>WG1455716</u>	
,2-Dibromoethane	U		0.381	1.00	1	04/04/2020 19:42	WG1455716	
Dibromomethane	U		0.346	1.00	1	04/04/2020 19:42	WG1455716	
,2-Dichlorobenzene	U		0.349	1.00	1	04/04/2020 19:42	WG1455716	
,3-Dichlorobenzene	U		0.220	1.00	1	04/04/2020 19:42	WG1455716	
4-Dichlorobenzene	U		0.274	1.00	1	04/04/2020 19:42	WG1455716	
Dichlorodifluoromethane	U		0.551	5.00	1	04/04/2020 19:42	WG1455716	
,1-Dichloroethane	U		0.259	1.00	1	04/04/2020 19:42	WG1455716	
,2-Dichloroethane	U		0.361	1.00	1	04/04/2020 19:42	WG1455716	
,1-Dichloroethene	U		0.398	1.00	1	04/04/2020 19:42	WG1455716	
is-1,2-Dichloroethene	U		0.260	1.00	1	04/04/2020 19:42	WG1455716	
rans-1,2-Dichloroethene	U		0.396	1.00	1	04/04/2020 19:42	WG1455716	
,2-Dichloropropane	U		0.306	1.00	1	04/04/2020 19:42	WG1455716	
,1-Dichloropropene	U		0.352	1.00	1	04/04/2020 19:42	WG1455716	
,3-Dichloropropane	U		0.366	1.00	1	04/04/2020 19:42	WG1455716	
is-1,3-Dichloropropene	U		0.418	1.00	1	04/04/2020 19:42	WG1455716	
rans-1,3-Dichloropropene	U		0.419	1.00	1	04/04/2020 19:42	WG1455716	
2,2-Dichloropropane	U		0.321	1.00	1	04/04/2020 19:42	WG1455716	
)i-isopropyl ether	U		0.320	1.00	1	04/04/2020 19:42	WG1455716	
thylbenzene	U		0.384	1.00	1	04/04/2020 19:42	WG1455716	
				1.00	1			
lexachloro-1,3-butadiene	U		0.256 0.326	1.00		04/04/2020 19:42	WG1455716	
sopropylbenzene	U				1	04/04/2020 19:42	WG1455716	
-Isopropyltoluene	U		0.350	1.00	1	04/04/2020 19:42	WG1455716	
-Butanone (MEK)	U		3.93	10.0	1	04/04/2020 19:42	WG1455716	
Nethylene Chloride	U		1.00	5.00	1	04/04/2020 19:42	WG1455716	
-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	04/04/2020 19:42	WG1455716	
Nethyl tert-butyl ether	U		0.367	1.00	1	04/04/2020 19:42	WG1455716	
laphthalene	U		1.00	5.00	1	04/04/2020 19:42	WG1455716	
-Propylbenzene	U		0.349	1.00	1	04/04/2020 19:42	WG1455716	
tyrene	U		0.307	1.00	1	04/04/2020 19:42	WG1455716	
1,1,2-Tetrachloroethane	U		0.385	1.00	1	04/04/2020 19:42	WG1455716	
1,2,2-Tetrachloroethane	U		0.130	1.00	1	04/04/2020 19:42	WG1455716	
1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	04/04/2020 19:42	WG1455716	
etrachloroethene	136		3.72	10.0	10	04/09/2020 21:03	WG1458412	
oluene	U		0.412	1.00	1	04/04/2020 19:42	WG1455716	
,2,3-Trichlorobenzene	U		0.230	1.00	1	04/04/2020 19:42	WG1455716	
	U		0.355	1.00	1	04/04/2020 19:42	WG1455716	

Weber, Hayes & Associates - CA

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37

12 of 88

SAMPLE RESULTS - 05 L1205565

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 19:42	WG1455716	² T(
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 19:42	WG1455716	
Trichloroethene	U		0.398	1.00	1	04/04/2020 19:42	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 19:42	WG1455716	³ S
1,2,3-Trichloropropane	U	J4	0.807	2.50	1	04/04/2020 19:42	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 19:42	WG1455716	⁴ C
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 19:42	WG1455716	Ŭ
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 19:42	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 19:42	WG1455716	⁵ Si
Xylenes, Total	U		1.06	3.00	1	04/04/2020 19:42	WG1455716	
(S) Toluene-d8	115			80.0-120		04/04/2020 19:42	WG1455716	⁶ Q
(S) Toluene-d8	106			80.0-120		04/09/2020 21:03	WG1458412	4
(S) 4-Bromofluorobenzene	105			77.0-126		04/04/2020 19:42	WG1455716	7
(S) 4-Bromofluorobenzene	94.4			77.0-126		04/09/2020 21:03	WG1458412	ΓG
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/04/2020 19:42	WG1455716	
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/09/2020 21:03	WG1458412	⁸ A

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
Acetone	U		10.0	50.0	1	04/04/2020 20:02	WG1455716	
Acrolein	U	<u>J4</u>	8.87	50.0	1	04/04/2020 20:02	WG1455716	
Acrylonitrile	U		1.87	10.0	1	04/04/2020 20:02	WG1455716	
Benzene	U		0.331	1.00	1	04/04/2020 20:02	WG1455716	
Bromobenzene	U	<u>J4</u>	0.352	1.00	1	04/04/2020 20:02	WG1455716	
Bromodichloromethane	U	<u><u> </u></u>	0.380	1.00	1	04/04/2020 20:02	WG1455716	
Bromoform	U		0.380	1.00	1	04/04/2020 20:02	WG1455716	
Bromomethane	U		0.469	5.00	1	04/04/2020 20:02		
							WG1455716	
n-Butylbenzene	U		0.361	1.00	1	04/04/2020 20:02	WG1455716	
sec-Butylbenzene	U		0.365	1.00	1	04/04/2020 20:02	WG1455716	
ert-Butylbenzene	U		0.399	1.00	1	04/04/2020 20:02	WG1455716	
Carbon tetrachloride	U		0.379	1.00	1	04/04/2020 20:02	WG1455716	
Chlorobenzene	U		0.348	1.00	1	04/04/2020 20:02	WG1455716	
Chlorodibromomethane	U		0.327	1.00	1	04/04/2020 20:02	WG1455716	
Chloroethane	U		0.453	5.00	1	04/04/2020 20:02	WG1455716	
Chloroform	U		0.324	5.00	1	04/04/2020 20:02	WG1455716	
Chloromethane	U		0.276	2.50	1	04/04/2020 20:02	WG1455716	
2-Chlorotoluene	U		0.375	1.00	1	04/04/2020 20:02	WG1455716	
1-Chlorotoluene	U		0.351	1.00	1	04/04/2020 20:02	WG1455716	
,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	04/04/2020 20:02	WG1455716	
,2-Dibromoethane	U		0.381	1.00	1	04/04/2020 20:02	WG1455716	
Dibromomethane	U		0.346	1.00	1	04/04/2020 20:02	WG1455716	
,2-Dichlorobenzene	U		0.340	1.00	1	04/04/2020 20:02	WG1455716	
,3-Dichlorobenzene	U		0.220	1.00	1	04/04/2020 20:02	WG1455716	
4-Dichlorobenzene	U		0.274	1.00	1	04/04/2020 20:02	WG1455716	
Dichlorodifluoromethane	U		0.551	5.00	1	04/04/2020 20:02	WG1455716	
,1-Dichloroethane	U		0.259	1.00	1	04/04/2020 20:02	WG1455716	
,2-Dichloroethane	U		0.361	1.00	1	04/04/2020 20:02	WG1455716	
,1-Dichloroethene	U		0.398	1.00	1	04/04/2020 20:02	WG1455716	
is-1,2-Dichloroethene	U		0.260	1.00	1	04/04/2020 20:02	WG1455716	
rans-1,2-Dichloroethene	U		0.396	1.00	1	04/04/2020 20:02	WG1455716	
,2-Dichloropropane	U		0.306	1.00	1	04/04/2020 20:02	WG1455716	
,1-Dichloropropene	U		0.352	1.00	1	04/04/2020 20:02	WG1455716	
,3-Dichloropropane	U		0.366	1.00	1	04/04/2020 20:02	WG1455716	
sis-1,3-Dichloropropene	U		0.418	1.00	1	04/04/2020 20:02	WG1455716	
rans-1,3-Dichloropropene	U		0.419	1.00	1	04/04/2020 20:02	WG1455716	
2,2-Dichloropropane	U		0.321	1.00	1	04/04/2020 20:02	WG1455716	
Di-isopropyl ether	U		0.320	1.00	1	04/04/2020 20:02	WG1455716	
Ethylbenzene	U		0.320	1.00	1	04/04/2020 20:02	WG1455716	
lexachloro-1,3-butadiene	U		0.256	1.00	1	04/04/2020 20:02	WG1455716	
sopropylbenzene	U		0.326	1.00	1	04/04/2020 20:02	WG1455716	
o-Isopropyltoluene	U		0.350	1.00	1	04/04/2020 20:02	WG1455716	
2-Butanone (MEK)	U		3.93	10.0	1	04/04/2020 20:02	WG1455716	
Methylene Chloride	U		1.00	5.00	1	04/04/2020 20:02	WG1455716	
I-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	04/04/2020 20:02	WG1455716	
Nethyl tert-butyl ether	U		0.367	1.00	1	04/04/2020 20:02	WG1455716	
laphthalene	U		1.00	5.00	1	04/04/2020 20:02	WG1455716	
-Propylbenzene	U		0.349	1.00	1	04/04/2020 20:02	WG1455716	
tyrene	U		0.307	1.00	1	04/04/2020 20:02	WG1455716	
,1,1,2-Tetrachloroethane	U		0.385	1.00	1	04/04/2020 20:02	WG1455716	
,1,2,2-Tetrachloroethane	U		0.130	1.00	1	04/04/2020 20:02	WG1455716	
,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	04/04/2020 20:02	WG1455716	
etrachloroethene	9.54		0.372	1.00	1	04/04/2020 20:02	WG1455716	
oluene	9.54 U		0.372	1.00	1			
						04/04/2020 20:02	WG1455716	
l,2,3-Trichlorobenzene	U		0.230	1.00	1	04/04/2020 20:02	WG1455716	
,2,4-Trichlorobenzene	U		0.355	1.00	1	04/04/2020 20:02	WG1455716	

Weber, Hayes & Associates - CA

PROJECT 2t009 SDG: L1205565 04/10/20 18:37

E: :37 PAGE: 14 of 88

SAMPLE RESULTS - 06 L1205565

Â

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 20:02	WG1455716	² Tc
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 20:02	WG1455716	
Trichloroethene	U		0.398	1.00	1	04/04/2020 20:02	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 20:02	WG1455716	³ Ss
1,2,3-Trichloropropane	U	<u>J4</u>	0.807	2.50	1	04/04/2020 20:02	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 20:02	WG1455716	⁴ Cr
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 20:02	WG1455716	CI
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 20:02	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 20:02	WG1455716	⁵ Sr
Xylenes, Total	U		1.06	3.00	1	04/04/2020 20:02	WG1455716	
(S) Toluene-d8	117			80.0-120		04/04/2020 20:02	WG1455716	⁶ Qo
(S) 4-Bromofluorobenzene	107			77.0-126		04/04/2020 20:02	WG1455716	
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/04/2020 20:02	WG1455716	⁷ GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
cetone	U		10.0	50.0	1	04/04/2020 20:22	WG1455716	
crolein	U	<u>J4</u>	8.87	50.0	1	04/04/2020 20:22	WG1455716	
crylonitrile	U		1.87	10.0	1	04/04/2020 20:22	WG1455716	
Benzene	U		0.331	1.00	1	04/04/2020 20:22	WG1455716	
Bromobenzene	U	<u>J4</u>	0.352	1.00	1	04/04/2020 20:22	WG1455716	
Bromodichloromethane	U	<u> </u>	0.380	1.00	1	04/04/2020 20:22	WG1455716	
Bromoform	U		0.469	1.00	1	04/04/2020 20:22	WG1455716	
Bromomethane	U		0.866	5.00	1	04/04/2020 20:22	WG1455716	
n-Butylbenzene	U		0.361	1.00	1	04/04/2020 20:22	WG1455716	
	U		0.365	1.00	1			
ec-Butylbenzene						04/04/2020 20:22	WG1455716	
ert-Butylbenzene	U		0.399	1.00	1	04/04/2020 20:22	WG1455716	
Carbon tetrachloride	U		0.379	1.00	1	04/04/2020 20:22	WG1455716	
Chlorobenzene	U		0.348	1.00	1	04/04/2020 20:22	WG1455716	
Chlorodibromomethane	U		0.327	1.00	1	04/04/2020 20:22	WG1455716	
Chloroethane	U		0.453	5.00	1	04/04/2020 20:22	WG1455716	
Chloroform	U		0.324	5.00	1	04/04/2020 20:22	WG1455716	
Chloromethane	U		0.276	2.50	1	04/04/2020 20:22	WG1455716	
2-Chlorotoluene	U		0.375	1.00	1	04/04/2020 20:22	WG1455716	
l-Chlorotoluene	U		0.351	1.00	1	04/04/2020 20:22	WG1455716	
,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	04/04/2020 20:22	WG1455716	
,2-Dibromoethane	U		0.381	1.00	1	04/04/2020 20:22	WG1455716	
Dibromomethane	U		0.346	1.00	1	04/04/2020 20:22	WG1455716	
,2-Dichlorobenzene	U		0.349	1.00	1	04/04/2020 20:22	WG1455716	
,3-Dichlorobenzene	U		0.220	1.00	1	04/04/2020 20:22	WG1455716	
4-Dichlorobenzene	U		0.274	1.00	1	04/04/2020 20:22	WG1455716	
Vichlorodifluoromethane	U		0.551	5.00	1	04/04/2020 20:22	WG1455716	
,1-Dichloroethane	U		0.259	1.00	1	04/04/2020 20:22	WG1455716	
,2-Dichloroethane	U		0.361	1.00	1	04/04/2020 20:22	WG1455716	
,1-Dichloroethene	U		0.398	1.00	1	04/04/2020 20:22	WG1455716	
is-1,2-Dichloroethene	U		0.260	1.00	1	04/04/2020 20:22	WG1455716	
rans-1,2-Dichloroethene	U		0.396	1.00	1	04/04/2020 20:22	WG1455716	
,2-Dichloropropane	U		0.306	1.00	1	04/04/2020 20:22	WG1455716	
,1-Dichloropropene	U		0.352	1.00	1	04/04/2020 20:22	WG1455716	
,3-Dichloropropane	U		0.366	1.00	1	04/04/2020 20:22	WG1455716	
is-1,3-Dichloropropene	U		0.418	1.00	1	04/04/2020 20:22	WG1455716	
rans-1,3-Dichloropropene	U		0.419	1.00	1	04/04/2020 20:22	WG1455716	
2,2-Dichloropropane	U		0.321	1.00	1	04/04/2020 20:22	WG1455716	
	U		0.321	1.00	1	04/04/2020 20:22		
Di-isopropyl ether						04/04/2020 20:22	WG1455716	
thylbenzene	U		0.384	1.00	1		WG1455716	
lexachloro-1,3-butadiene	U		0.256	1.00	1	04/04/2020 20:22	WG1455716	
sopropylbenzene	U		0.326	1.00	1	04/04/2020 20:22	WG1455716	
o-Isopropyltoluene	U		0.350	1.00	1	04/04/2020 20:22	WG1455716	
2-Butanone (MEK)	U		3.93	10.0	1	04/04/2020 20:22	WG1455716	
Methylene Chloride	U		1.00	5.00	1	04/04/2020 20:22	WG1455716	
I-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	04/04/2020 20:22	<u>WG1455716</u>	
lethyl tert-butyl ether	U		0.367	1.00	1	04/04/2020 20:22	WG1455716	
laphthalene	U		1.00	5.00	1	04/04/2020 20:22	WG1455716	
-Propylbenzene	U		0.349	1.00	1	04/04/2020 20:22	WG1455716	
tyrene	U		0.307	1.00	1	04/04/2020 20:22	WG1455716	
1,1,2-Tetrachloroethane	U		0.385	1.00	1	04/04/2020 20:22	WG1455716	
1,2,2-Tetrachloroethane	U		0.130	1.00	1	04/04/2020 20:22	WG1455716	
,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	04/04/2020 20:22	WG1455716	
etrachloroethene	16.9		0.372	1.00	1	04/04/2020 20:22	WG1455716	
oluene	U		0.412	1.00	1	04/04/2020 20:22	WG1455716	
I,2,3-Trichlorobenzene	U		0.230	1.00	1	04/04/2020 20:22	WG1455716	
	-		0.355	1.00	1	04/04/2020 20:22	WG1455716	

Weber, Hayes & Associates - CA

2t009

L1205565

DATE/TIME: 04/10/20 18:37

16 of 88

Â

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 20:22	WG1455716	²
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 20:22	WG1455716	
Trichloroethene	U		0.398	1.00	1	04/04/2020 20:22	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 20:22	WG1455716	ິເ
1,2,3-Trichloropropane	U	<u>J4</u>	0.807	2.50	1	04/04/2020 20:22	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 20:22	WG1455716	4
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 20:22	WG1455716	
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 20:22	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 20:22	WG1455716	5
Xylenes, Total	U		1.06	3.00	1	04/04/2020 20:22	WG1455716	
(S) Toluene-d8	112			80.0-120		04/04/2020 20:22	WG1455716	⁶
(S) 4-Bromofluorobenzene	107			77.0-126		04/04/2020 20:22	WG1455716	
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/04/2020 20:22	WG1455716	7

*

Volatile Organic Compounds (GC/MS) by Method 8260B

AnalyteugAcctoneUAccoleinUAcroleinUAcroleinUBarzeneUBromobenzeneUBromodichloromethaneUBromodichloromethaneUBromodichloromethaneUBromodichloromethaneUBromomethaneUBromomethaneUBromothaneUChlorobenzeneUCarbon tetrachlorideUChlorobenzeneUChlorobenzeneUChlorodibromomethaneUChloroformUChloroformUChlorotolueneU2-ChlorotolueneU2-Dibromo-3-ChloropropaneUDibromoethaneUQ-Di		ug/l 10.0 8.87 1.87 0.331 0.352 0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.348 0.327 0.453 0.324 0.276 0.375 0.351	ug/I 50.0 50.0 10.0 1.00 1.00 1.00 5.00 1.00 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42	WG1455716	2 3 4 5 6 7 8
AcroleinUAcroleinUAcrylonitrileUBenzeneUBromobenzeneUBromodichloromethaneUBromodichloromethaneUBromomethaneUBromomethaneUBromomethaneUBromomethaneUBromomethaneUBromomethaneUCarbon tetrachlorideUChlorobenzeneUChlorobenzeneUChlorodibromomethaneUChloroformUChlorotolueneUP-ChlorotolueneUQ-Dibromo-3-ChloropropaneUQ-DibromoethaneUDibromomethane <td></td> <td>8.87 1.87 0.331 0.352 0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375</td> <td>50.0 10.0 1.00 1.00 1.00 5.00 1.00 1.00</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42</td> <td>WG1455716 WG1455716 WG1455716</td> <td>[] [] [] [] [] [] [] [] [] []</td>		8.87 1.87 0.331 0.352 0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	50.0 10.0 1.00 1.00 1.00 5.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716	[] [] [] [] [] [] [] [] [] []
Benzene U Benzene U Bromobenzene U Bromodichloromethane U Bromoform U Bromomethane U Bromomethane U Bromomethane U Chlorobenzene U Chlorobenzene U Chlorodibromomethane U Chlorodibromomethane U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chlorotoluene U		0.331 0.352 0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.453 0.324 0.276 0.375	1.00 1.00 1.00 5.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	[4 5 6 7
Bromobenzene U Bromodichloromethane U Bromodichloromethane U Bromodichloromethane U Bromomethane U Chlorobenzene U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorotoluene U Chlorotoluene U Q-Dibromo-3-Chloropropane U Q-Dibromoethane U Q-Dibromoethane U		0.352 0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.453 0.324 0.276 0.375	1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	[4 5 6 7
BromodichloromethaneUBromoformUBromoformUBromomethaneUBromomethaneUBromomethaneUBromomethaneUBromomethaneUCarbon tetrachlorideUChlorobenzeneUChlorodibromomethaneUChlorodibromomethaneUChloroformUChlorodibromomethaneUChlorodibromomethaneUChlorodibromomethaneUChlorotolueneUChlorotolueneUQ-Dibromo-3-ChloropropaneUDibromomethaneU<		0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	5 6 7
BromodichloromethaneUBromoformUBromoformUBromoformUBromomethaneUBromoformUBromoformUBromoformUCarbon tetrachlorideUChlorobenzeneUChlorodibromomethaneUChlorodibromomethaneUChloroformUChloroformUChlorotolueneUChlorotolueneUChlorotolueneUQ-Dibromo-3-ChloropropaneUDibromomethaneUDibromomethaneUDibromomethaneUDibromomethaneU		0.380 0.469 0.866 0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	5 6 7
RromoformUBromomethaneUBromomethaneUBromomethaneUBromomethaneUCarbon tetrachlorideUCarbon tetrachlorideUChlorobenzeneUChlorobenzeneUChlorodibromomethaneUChloroformUChlorotolueneUChlorotolueneUChlorotolueneUChlorotolueneUChlorotolueneUChloromethaneUChlorotolueneUChlorometha		0.469 0.866 0.361 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	5 [6] [7]
BromomethaneUa-ButylbenzeneUac-ButylbenzeneUcarbon tetrachlorideUCarbon tetrachlorideUChlorobenzeneUChlorobenzeneUChlorodibromomethaneUChloroformUChlorodibromomethaneUChlorodibromomethaneUChlorodibromomethaneUChloroformUChlorotolueneUQ-ChlorotolueneUQ-Dibromo-3-ChloropropaneUQ-DibromomethaneUDibromomethaneUDibromomethaneU		0.866 0.361 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	5.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716	7
Butylbenzene U sec-Butylbenzene U ert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorotoluene U Q-Dibromo-3-Chloropropane U Q-Dibromoethane U		0.361 0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00	1 1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716 WG1455716 WG1455716 WG1455716 WG1455716 WG1455716	7
ec-Butylbenzene U ert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroothane U Chloroothane U Chloromethane U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chloromothane U		0.365 0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 1.00 1.00 1.00 5.00 5.00	1 1 1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716 WG1455716 WG1455716 WG1455716 WG1455716	7
ert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroothane U Chloroothane U Chlorotoluene U Chlorotoluene U Chlorotoluene U Chloromo-3-Chloropropane U (2-Dibromo-3-Chloropropane U Dibromomethane U		0.399 0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 1.00 1.00 5.00 5.00	1 1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716 WG1455716 WG1455716 WG1455716	7
Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroethane U Chloroform U Chloroform U Chlorotoluene U L-Chlorotoluene U J,2-Dibromo-3-Chloropropane U JDibromomethane U		0.379 0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 1.00 5.00 5.00	1 1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716 WG1455716 WG1455716	7
ChlorobenzeneUChlorodibromomethaneUChlorodibromomethaneUChloroformUChlorodotlaneUChlorotolueneUChlorotolueneUChlorotolueneUQ-Dibromo-3-ChloropropaneUQ-DibromoethaneUDibromomethaneU		0.348 0.327 0.453 0.324 0.276 0.375	1.00 1.00 5.00 5.00	1 1 1 1	04/04/2020 20:42 04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716 WG1455716	
ChlorodibromomethaneUChlorodibromomethaneUChloroethaneUChloromethaneUPChlorotolueneUL-ChlorotolueneU.2-Dibromo-3-ChloropropaneU.2-DibromoethaneUDibromomethaneU		0.327 0.453 0.324 0.276 0.375	1.00 5.00 5.00	1 1 1	04/04/2020 20:42 04/04/2020 20:42	WG1455716 WG1455716	
ChloroethaneUChloroformUChloromethaneUChlorotolueneUChlorotolueneUChlorotolueneU.2-Dibromo-3-ChloropropaneU.2-DibromoethaneUDibromomethaneU		0.453 0.324 0.276 0.375	5.00 5.00	1 1	04/04/2020 20:42	WG1455716	8
ChloroformUChloromethaneUChlorotolueneU-ChlorotolueneU.2-Dibromo-3-ChloropropaneUDibromoethaneU		0.324 0.276 0.375	5.00	1			8
Chloromethane U -Chlorotoluene U -Chlorotoluene U ,2-Dibromo-3-Chloropropane U ,2-Dibromoethane U		0.276 0.375					
-Chlorotoluene U -Chlorotoluene U ,2-Dibromo-3-Chloropropane U ,2-Dibromoethane U		0.375	2.50	1		WG1455716	Ĭ
-Chlorotoluene U ,2-Dibromo-3-Chloropropane U ,2-Dibromoethane U ibromomethane U			1.00	1	04/04/2020 20:42	WG1455716	
2-Dibromo-3-Chloropropane U 2-Dibromoethane U Dibromomethane U	I	0.351	1.00	1	04/04/2020 20:42	WG1455716	9
2-Dibromoethane U Dibromomethane U			1.00	1	04/04/2020 20:42	<u>WG1455716</u>	L
Dibromomethane U		1.33	5.00	1	04/04/2020 20:42	<u>WG1455716</u>	
		0.381	1.00	1	04/04/2020 20:42	<u>WG1455716</u>	
,2-Dichlorobenzene U	1	0.346	1.00	1	04/04/2020 20:42	WG1455716	
		0.349	1.00	1	04/04/2020 20:42	WG1455716	
,3-Dichlorobenzene U	l	0.220	1.00	1	04/04/2020 20:42	WG1455716	
4-Dichlorobenzene U	l	0.274	1.00	1	04/04/2020 20:42	WG1455716	
Dichlorodifluoromethane U	l	0.551	5.00	1	04/04/2020 20:42	WG1455716	
,1-Dichloroethane U		0.259	1.00	1	04/04/2020 20:42	WG1455716	
,2-Dichloroethane U	l	0.361	1.00	1	04/04/2020 20:42	WG1455716	
,1-Dichloroethene U	1	0.398	1.00	1	04/04/2020 20:42	WG1455716	
is-1,2-Dichloroethene U	l	0.260	1.00	1	04/04/2020 20:42	WG1455716	
rans-1,2-Dichloroethene U	l	0.396	1.00	1	04/04/2020 20:42	WG1455716	
,2-Dichloropropane U		0.306	1.00	1	04/04/2020 20:42	WG1455716	
,1-Dichloropropene U	I	0.352	1.00	1	04/04/2020 20:42	WG1455716	
,3-Dichloropropane U		0.366	1.00	1	04/04/2020 20:42	WG1455716	
:is-1,3-Dichloropropene U		0.418	1.00	1	04/04/2020 20:42	WG1455716	
rans-1,3-Dichloropropene U		0.419	1.00	1	04/04/2020 20:42	WG1455716	
2,2-Dichloropropane U		0.321	1.00	1	04/04/2020 20:42	WG1455716	
Di-isopropyl ether U		0.320	1.00	1	04/04/2020 20:42	WG1455716	
Ethylbenzene U		0.384	1.00	1	04/04/2020 20:42	WG1455716	
			1.00	1	04/04/2020 20:42		
lexachloro-1,3-butadiene U		0.256 0.326	1.00	1	04/04/2020 20:42	WG1455716 WG1455716	
sopropylbenzene U						WG1455716	
-Isopropyltoluene U		0.350	1.00	1	04/04/2020 20:42	WG1455716	
-Butanone (MEK) U		3.93	10.0	1	04/04/2020 20:42	WG1455716	
Methylene Chloride U		1.00	5.00	1	04/04/2020 20:42	WG1455716	
-Methyl-2-pentanone (MIBK) U		2.14	10.0	1	04/04/2020 20:42	WG1455716	
Nethyl tert-butyl ether U		0.367	1.00	1	04/04/2020 20:42	WG1455716	
laphthalene U		1.00	5.00	1	04/04/2020 20:42	WG1455716	
-Propylbenzene U		0.349	1.00	1	04/04/2020 20:42	WG1455716	
tyrene U		0.307	1.00	1	04/04/2020 20:42	WG1455716	
1,1,2-Tetrachloroethane U		0.385	1.00	1	04/04/2020 20:42	WG1455716	
1,2,2-Tetrachloroethane U		0.130	1.00	1	04/04/2020 20:42	WG1455716	
1,2-Trichlorotrifluoroethane U		0.303	1.00	1	04/04/2020 20:42	WG1455716	
etrachloroethene 19	92	0.372	1.00	1	04/04/2020 20:42	WG1455716	
oluene U		0.412	1.00	1	04/04/2020 20:42	WG1455716	
,2,3-Trichlorobenzene U		0.230	1.00	1	04/04/2020 20:42	WG1455716	
,2,4-Trichlorobenzene U		0.355	1.00	1	04/04/2020 20:42	WG1455716	

Weber, Hayes & Associates - CA

PROJECT: 2t009 SDG: L1205565

04/10/20 18:37

PAGE: 18 of 88

1

Â

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
1,1,1-Trichloroethane	U		0.319	1.00	1	04/04/2020 20:42	WG1455716	2_
1,1,2-Trichloroethane	U		0.383	1.00	1	04/04/2020 20:42	WG1455716	
Trichloroethene	0.403	J	0.398	1.00	1	04/04/2020 20:42	WG1455716	3
Trichlorofluoromethane	U		1.20	5.00	1	04/04/2020 20:42	WG1455716	Ĩ
1,2,3-Trichloropropane	U	<u>J4</u>	0.807	2.50	1	04/04/2020 20:42	WG1455716	
1,2,4-Trimethylbenzene	U		0.373	1.00	1	04/04/2020 20:42	WG1455716	4
1,2,3-Trimethylbenzene	U		0.321	1.00	1	04/04/2020 20:42	WG1455716	
1,3,5-Trimethylbenzene	U	<u>J4</u>	0.387	1.00	1	04/04/2020 20:42	WG1455716	5
Vinyl chloride	U		0.259	1.00	1	04/04/2020 20:42	WG1455716	5
Xylenes, Total	U		1.06	3.00	1	04/04/2020 20:42	WG1455716	
(S) Toluene-d8	119			80.0-120		04/04/2020 20:42	WG1455716	6
(S) 4-Bromofluorobenzene	103			77.0-126		04/04/2020 20:42	WG1455716	
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		04/04/2020 20:42	WG1455716	7

SAMPLE RESULTS - 09 L1205565

Ср

Тс

Ss

Cn

Qc

GI

Â

Sc

	Result	Qualifier	Dilution Analy		Batch			
nalyte	%		date .		11104450			
tal Solids	87.9		1 04/08	3/2020 22:08	WG14569	365		
olatile Organic Com	pounds (GC/I	MS) by Me	thod 8260	В				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis date / time	Batch	
nalyte	mg/kg U		mg/kg	mg/kg	1		WC14EE717	
cetone			0.0156	0.0285	1	04/05/2020 04:56	WG1455717	
crylonitrile	U		0.00216	0.0142	1	04/05/2020 04:56	WG1455717	
omobenzene	UU		0.000455	0.00114	1	04/05/2020 04:56 04/05/2020 04:56	WG1455717	
omodichloromethane	U		0.00120	0.0042	1	04/05/2020 04:56	WG1455717 WG1455717	
omotorm	U		0.00681	0.00285	1	04/05/2020 04:56		
	U		0.00681	0.0285		04/05/2020 04:56	WG1455717	
omomethane					1		WG1455717	
Butylbenzene	U		0.00437	0.0142	1	04/05/2020 04:56	WG1455717	
c-Butylbenzene	U		0.00288	0.0142	1	04/05/2020 04:56	WG1455717	
rt-Butylbenzene	U		0.00176	0.00569	1	04/05/2020 04:56	WG1455717	
arbon tetrachloride	U		0.00123	0.00569	1	04/05/2020 04:56	WG1455717	
llorobenzene	U		0.000652	0.00285	1	04/05/2020 04:56	WG1455717	
hlorodibromomethane	U		0.000512	0.00285	1	04/05/2020 04:56	WG1455717	
lloroethane	U		0.00123	0.00569	1	04/05/2020 04:56	WG1455717	
lloroform	U		0.000472	0.00285	1	04/05/2020 04:56	WG1455717	
lloromethane	U		0.00158	0.0142	1	04/05/2020 04:56	WG1455717	
Chlorotoluene	U		0.00105	0.00285	1	04/05/2020 04:56	WG1455717	
Chlorotoluene	U		0.00129	0.00569	1	04/05/2020 04:56	WG1455717	
-Dibromo-3-Chloropropane	U		0.00581	0.0285	1	04/05/2020 04:56	WG1455717	
-Dibromoethane	U		0.000598	0.00285	1	04/05/2020 04:56	WG1455717	
promomethane	U		0.00114	0.00569	1	04/05/2020 04:56	WG1455717	
-Dichlorobenzene	U		0.00165	0.00569	1	04/05/2020 04:56	WG1455717	
-Dichlorobenzene	U		0.00194	0.00569	1	04/05/2020 04:56	WG1455717	
-Dichlorobenzene	U		0.00224	0.00569	1	04/05/2020 04:56	WG1455717	
chlorodifluoromethane	U	<u>J4</u>	0.000931	0.00285	1	04/05/2020 04:56	WG1455717	
-Dichloroethane	U		0.000655	0.00285	1	04/05/2020 04:56	WG1455717	
2-Dichloroethane	U		0.000541	0.00285	1	04/05/2020 04:56	WG1455717	
-Dichloroethene	U		0.000569	0.00285	1	04/05/2020 04:56	WG1455717	
-1,2-Dichloroethene	U		0.000785	0.00285	1	04/05/2020 04:56	WG1455717	
ns-1,2-Dichloroethene	U		0.00163	0.00569	1	04/05/2020 04:56	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00145	0.00569	1	04/05/2020 04:56	WG1455717	
-Dichloropropene	U		0.000797	0.00285	1	04/05/2020 04:56	WG1455717	
B-Dichloropropane	U		0.00199	0.00569	1	04/05/2020 04:56	WG1455717	
-1,3-Dichloropropene	U		0.000772	0.00285	1	04/05/2020 04:56	WG1455717	
ns-1,3-Dichloropropene	U		0.00174	0.00569	1	04/05/2020 04:56	WG1455717	
2-Dichloropropane	U		0.000903	0.00285	1	04/05/2020 04:56	WG1455717	
-isopropyl ether	U		0.000398	0.00114	1	04/05/2020 04:56	WG1455717	
nylbenzene	U		0.000603	0.00285	1	04/05/2020 04:56	WG1455717	
exachloro-1,3-butadiene	U		0.0145	0.0285	1	04/05/2020 04:56	WG1455717	
propylbenzene	U		0.000982	0.00285	1	04/05/2020 04:56	WG1455717	
sopropyltoluene	U		0.00265	0.00569	1	04/05/2020 04:56	WG1455717	
Butanone (MEK)	0.0223	<u>B J</u>	0.0142	0.0285	1	04/05/2020 04:56	WG1455717	
thylene Chloride	U		0.00756	0.0285	1	04/05/2020 04:56	WG1455717	
Methyl-2-pentanone (MIBK)	U		0.0114	0.0285	1	04/05/2020 04:56	WG1455717	
ethyl tert-butyl ether	U		0.000336	0.00114	1	04/05/2020 04:56	WG1455717	
phthalene	U		0.00355	0.0142	1	04/05/2020 04:56	WG1455717	
Propylbenzene	U		0.00134	0.00569	1	04/05/2020 04:56	WG1455717	
yrene	U		0.00311	0.0142	1	04/05/2020 04:56	WG1455717	
,1,2-Tetrachloroethane	U		0.000569	0.00285	1	04/05/2020 04:56	WG1455717	
,2,2-Tetrachloroethane	U		0.000444	0.00285	1	04/05/2020 04:56	WG1455717	
	_			_				
ACCOUN	1:		PROJEC	1:	SE	DG:	DATE/TIME:	P

1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000768	0.00285	1	04/05/2020 04:56	WG1455717	
Tetrachloroethene	0.00162	J	0.000797	0.00285	1	04/05/2020 04:56	WG1455717	
Toluene	U		0.00142	0.00569	1	04/05/2020 04:56	WG1455717	
1,2,3-Trichlorobenzene	U		0.000711	0.0142	1	04/05/2020 04:56	WG1455717	
1,2,4-Trichlorobenzene	U		0.00549	0.0142	1	04/05/2020 04:56	WG1455717	
1,1,1-Trichloroethane	U		0.000313	0.00285	1	04/05/2020 04:56	WG1455717	
1,1,2-Trichloroethane	U		0.00101	0.00285	1	04/05/2020 04:56	WG1455717	
Trichloroethene	U		0.000455	0.00114	1	04/05/2020 04:56	WG1455717	
Trichlorofluoromethane	U		0.000569	0.00285	1	04/05/2020 04:56	WG1455717	
1,2,3-Trichloropropane	U		0.00581	0.0142	1	04/05/2020 04:56	WG1455717	
1,2,4-Trimethylbenzene	U		0.00132	0.00569	1	04/05/2020 04:56	WG1455717	
1,2,3-Trimethylbenzene	U		0.00131	0.00569	1	04/05/2020 04:56	WG1455717	
1,3,5-Trimethylbenzene	U		0.00123	0.00569	1	04/05/2020 04:56	WG1455717	
Vinyl chloride	U		0.000777	0.00285	1	04/05/2020 04:56	WG1455717	
Xylenes, Total	U		0.00544	0.00740	1	04/05/2020 04:56	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 04:56	WG1455717	
(S) 4-Bromofluorobenzene	98.6			67.0-138		04/05/2020 04:56	WG1455717	
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		04/05/2020 04:56	WG1455717	

SAMPLE RESULTS - 10 L1205565

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	84.1		1	04/08/2020 21:48	WG1456966	T

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result %	Qualifier		alysis te / time	Batch			
fotal Solids	84.1			/08/2020 21:48	WG1456	966		
/olatile Organic Com	oounds (GC/	MS) by Me	thod 826	60B				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
cetone	U		0.0163	0.0297	1	04/05/2020 05:15	WG1455717	
crylonitrile	U		0.00226	0.0149	1	04/05/2020 05:15	WG1455717	
enzene	U		0.000475	0.00119	1	04/05/2020 05:15	WG1455717	
romobenzene	U		0.00125	0.0149	1	04/05/2020 05:15	WG1455717	
romodichloromethane	U		0.000937	0.00297	1	04/05/2020 05:15	WG1455717	
romoform	U		0.00711	0.0297	1	04/05/2020 05:15	WG1455717	
romomethane	U		0.00440	0.0149	1	04/05/2020 05:15	WG1455717	
-Butylbenzene	U		0.00456	0.0149	1	04/05/2020 05:15	WG1455717	
ec-Butylbenzene	U		0.00301	0.0149	1	04/05/2020 05:15	WG1455717	
ert-Butylbenzene	U		0.00184	0.00594	1	04/05/2020 05:15	WG1455717	
Carbon tetrachloride	U		0.00128	0.00594	1	04/05/2020 05:15	WG1455717	
hlorobenzene	U		0.000681	0.00297	1	04/05/2020 05:15	WG1455717	
Chlorodibromomethane	U		0.000535		1	04/05/2020 05:15	WG1455717	
chloroethane	U		0.00128	0.00594	1	04/05/2020 05:15	WG1455717	
hloroform	U		0.000493		1	04/05/2020 05:15	WG1455717	
hloromethane	U		0.00165	0.0149	1	04/05/2020 05:15	WG1455717	
-Chlorotoluene	U		0.00109	0.00297	1	04/05/2020 05:15	WG1455717	
-Chlorotoluene	U		0.00134	0.00594	1	04/05/2020 05:15	WG1455717	
2-Dibromo-3-Chloropropane	U		0.00606	0.0297	1	04/05/2020 05:15	WG1455717	
2-Dibromoethane	U		0.000624		1	04/05/2020 05:15	WG1455717	
ibromomethane	U		0.00119	0.00594	1	04/05/2020 05:15	WG1455717	
2-Dichlorobenzene	U		0.00172	0.00594	1	04/05/2020 05:15	WG1455717	
3-Dichlorobenzene	U		0.00202	0.00594	1	04/05/2020 05:15	WG1455717	
4-Dichlorobenzene	U		0.00234	0.00594	1	04/05/2020 05:15	WG1455717	
ichlorodifluoromethane	U	<u>J4</u>	0.000972		1	04/05/2020 05:15	WG1455717	
1-Dichloroethane	U	_	0.000683		1	04/05/2020 05:15	WG1455717	
2-Dichloroethane	U		0.000565		1	04/05/2020 05:15	WG1455717	
1-Dichloroethene	U		0.000594		1	04/05/2020 05:15	WG1455717	
is-1,2-Dichloroethene	U		0.000820		1	04/05/2020 05:15	WG1455717	
ans-1,2-Dichloroethene	U		0.00170	0.00594	1	04/05/2020 05:15	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00151	0.00594	1	04/05/2020 05:15	WG1455717	
1-Dichloropropene	U	<u> </u>	0.000832		1	04/05/2020 05:15	WG1455717	
3-Dichloropropane	U		0.00208	0.00594	1	04/05/2020 05:15	WG1455717	
s-1,3-Dichloropropene	U		0.000806		1	04/05/2020 05:15	WG1455717	
ans-1,3-Dichloropropene	U		0.00182	0.00594	1	04/05/2020 05:15	WG1455717	
2-Dichloropropane	U		0.000942		1	04/05/2020 05:15	WG1455717	
i-isopropyl ether	U		0.000416	0.00119	1	04/05/2020 05:15	WG1455717	
thylbenzene	U		0.000630		1	04/05/2020 05:15	WG1455717	
exachloro-1,3-butadiene	U		0.0151	0.0297	1	04/05/2020 05:15	WG1455717	
opropylbenzene	U		0.00103	0.00297	1	04/05/2020 05:15	WG1455717	
Isopropyltoluene	U		0.00277	0.00594	1	04/05/2020 05:15	WG1455717	
Butanone (MEK)	0.0308	B	0.0149	0.0297	1	04/05/2020 05:15	WG1455717	
ethylene Chloride	U	Ξ	0.00789	0.0297	1	04/05/2020 05:15	WG1455717	
Methyl-2-pentanone (MIBK)	U		0.0119	0.0297	1	04/05/2020 05:15	WG1455717	
ethyl tert-butyl ether	U		0.000351	0.00119	1	04/05/2020 05:15	WG1455717	
aphthalene	U		0.000371	0.0149	1	04/05/2020 05:15	WG1455717	
Propylbenzene	U		0.00140	0.00594	1	04/05/2020 05:15	WG1455717	
yrene	U		0.00324	0.00394	1	04/05/2020 05:15	WG1455717	
1,1,2-Tetrachloroethane	U		0.000524		1	04/05/2020 05:15	WG1455717	
,1,2,2-Tetrachloroethane	U		0.000464	0.00297	1	04/05/2020 05:15	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

SS-2-D4.5 Collected date/time: 04/01/20 00:00

SAMPLE RESULTS - 10

2

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	(
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000802	0.00297	1	04/05/2020 05:15	WG1455717	2_
Tetrachloroethene	0.00132	J	0.000832	0.00297	1	04/05/2020 05:15	WG1455717	
Toluene	U		0.00149	0.00594	1	04/05/2020 05:15	WG1455717	3
1,2,3-Trichlorobenzene	U		0.000743	0.0149	1	04/05/2020 05:15	WG1455717	ິເ
1,2,4-Trichlorobenzene	U		0.00573	0.0149	1	04/05/2020 05:15	WG1455717	
1,1,1-Trichloroethane	U		0.000327	0.00297	1	04/05/2020 05:15	WG1455717	4
1,1,2-Trichloroethane	U		0.00105	0.00297	1	04/05/2020 05:15	WG1455717	
Trichloroethene	U		0.000475	0.00119	1	04/05/2020 05:15	WG1455717	5
Trichlorofluoromethane	U		0.000594	0.00297	1	04/05/2020 05:15	WG1455717	5
1,2,3-Trichloropropane	U		0.00606	0.0149	1	04/05/2020 05:15	WG1455717	
1,2,4-Trimethylbenzene	U		0.00138	0.00594	1	04/05/2020 05:15	WG1455717	⁶ (
1,2,3-Trimethylbenzene	U		0.00137	0.00594	1	04/05/2020 05:15	WG1455717	
1,3,5-Trimethylbenzene	U		0.00128	0.00594	1	04/05/2020 05:15	WG1455717	7
Vinyl chloride	U		0.000812	0.00297	1	04/05/2020 05:15	WG1455717	Í (
Xylenes, Total	U		0.00568	0.00773	1	04/05/2020 05:15	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 05:15	WG1455717	8
(S) 4-Bromofluorobenzene	98.5			67.0-138		04/05/2020 05:15	WG1455717	,
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		04/05/2020 05:15	WG1455717	9

SDG: L1205565 DATE/TIME: 04/10/20 18:37

SAMPLE RESULTS - 11 L1205565

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	93.1		1	04/08/2020 21:48	WG1456966	T

Volatile Organic Compounds (GC/MS) by Method 8260B

%		date /	time				
93.1			8/2020 21:48	WG14569	966		
ounds (GC/	MS) by Me	ethod 8260	В				
Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
mg/kg		mg/kg	mg/kg		date / time		
U		0.0147	0.0268	1	04/05/2020 05:34	WG1455717	
U		0.00204	0.0134	1	04/05/2020 05:34	WG1455717	
U		0.000430	0.00107	1	04/05/2020 05:34	WG1455717	
U		0.00113	0.0134	1	04/05/2020 05:34	WG1455717	
U		0.000846	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.00642	0.0268	1	04/05/2020 05:34	WG1455717	
U		0.00397	0.0134	1	04/05/2020 05:34	WG1455717	
U		0.00412	0.0134	1	04/05/2020 05:34	WG1455717	
U		0.00272	0.0134	1	04/05/2020 05:34	WG1455717	
		0.00166	0.00537	1	04/05/2020 05:34		
				1			
	<u>J4</u>						
						WG1455717	
				1		WG1455717	
U		0.000741	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.00154	0.00537	1	04/05/2020 05:34	WG1455717	
U	<u>J4</u>	0.00136	0.00537	1	04/05/2020 05:34	WG1455717	
U		0.000752	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.00188	0.00537	1	04/05/2020 05:34	WG1455717	
U		0.000728	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.00164	0.00537	1	04/05/2020 05:34	WG1455717	
U		0.000852	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.000376	0.00107	1	04/05/2020 05:34	WG1455717	
U		0.000569	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.0136	0.0268	1	04/05/2020 05:34	WG1455717	
U		0.000927	0.00268	1	04/05/2020 05:34	WG1455717	
U		0.00250	0.00537	1	04/05/2020 05:34	WG1455717	
0.0160	ВJ	0.0134	0.0268	1	04/05/2020 05:34	WG1455717	
				1	04/05/2020 05:34		
				1			
	Resuit (dry) mg/kg U	Result (dry) Qualifier mg/kg Qualifier U U U J4 U U U U U U U U U U U U U U U U	Result (dry)QualifierMDL (dry)mg/kg	mg/kg mg/kg mg/kg mg/kg U 0.0147 0.0268 U 0.000430 0.0134 U 0.000430 0.0134 U 0.000430 0.0134 U 0.000846 0.0268 U 0.000846 0.0268 U 0.00397 0.0134 U 0.00412 0.0134 U 0.00166 0.00537 U 0.00166 0.00537 U 0.00166 0.00268 U 0.00166 0.00268 U 0.00166 0.00268 U 0.00161 0.00268 U 0.00161 0.00268 U 0.00174 0.00268 U 0.00174 0.00537 U 0.00174 0.00537 U 0.00174 0.00268 U 0.00174 0.00268 U 0.00174 0.00268 U 0.00174 0.00268	Result (dry) mg/kg Qualiffer mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Dilution mg/kg U 0.0147 0.0268 1 U 0.00204 0.0134 1 U 0.000430 0.0013 1 U 0.000430 0.0013 1 U 0.00042 0.0268 1 U 0.00642 0.0268 1 U 0.00642 0.0268 1 U 0.00642 0.0268 1 U 0.00166 0.00537 1 U 0.00166 0.00258 1 U 0.0017 0.00268 1 U 0.0017 0.00537 1 U 0.0017 0.00537 1 U 0.0017 <td>Result (dry) mg/kg Qualifier mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Diution mg/kg Analysis date / time U 0.0147 0.0268 1 0.405/2020 05:34 U 0.000430 0.0107 1 0.405/2020 05:34 U 0.000846 0.000768 1 0.405/2020 05:34 U 0.000846 0.00268 1 0.405/2020 05:34 U 0.000846 0.00268 1 0.405/2020 05:34 U 0.00172 0.134 1 0.405/2020 05:34 U 0.00272 0.134 1 0.405/2020 05:34 U 0.00165 0.00257 1 0.405/2020 05:34 U 0.00165 0.00268 1 0.405/2020 05:34 U 0.00165 0.00268 1 0.405/2020 05:34 U 0.00268 1 0.405/2020 05:34 U 0.00166 0.00268 1 0.405/2020 05:34 U 0.00166 0.00268 1 0.405/2020 05:34</td> <td>Result (dry) mg/kg Qualifie mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Diution mg/kg Analysis date/ trime Batch U 0.0047 0.0268 1 0.405/2020 0534 WG145577 U 0.000430 0.0017 1 0.405/2020 0534 WG145577 U 0.000430 0.0017 1 0.405/2020 0534 WG145577 U 0.000642 0.0268 1 0.405/2020 0534 WG145577 U 0.000642 0.0268 1 0.405/2020 0534 WG145577 U 0.000412 0.0134 1 0.405/2020 0534 WG145577 U 0.00045 0.00278 1 0.405/2020 0534 WG145577 U 0.0016 0.00537 1 0.405/2020 0534 WG145577 U 0.0016 0.00537 1 0.405/2020 0534 WG145577 U 0.0016 0.00268 1 0.405/2020 0534 WG145577 U 0.0016 0.00268 1 0.405/2020 0534 WG1</td>	Result (dry) mg/kg Qualifier mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Diution mg/kg Analysis date / time U 0.0147 0.0268 1 0.405/2020 05:34 U 0.000430 0.0107 1 0.405/2020 05:34 U 0.000846 0.000768 1 0.405/2020 05:34 U 0.000846 0.00268 1 0.405/2020 05:34 U 0.000846 0.00268 1 0.405/2020 05:34 U 0.00172 0.134 1 0.405/2020 05:34 U 0.00272 0.134 1 0.405/2020 05:34 U 0.00165 0.00257 1 0.405/2020 05:34 U 0.00165 0.00268 1 0.405/2020 05:34 U 0.00165 0.00268 1 0.405/2020 05:34 U 0.00268 1 0.405/2020 05:34 U 0.00166 0.00268 1 0.405/2020 05:34 U 0.00166 0.00268 1 0.405/2020 05:34	Result (dry) mg/kg Qualifie mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Diution mg/kg Analysis date/ trime Batch U 0.0047 0.0268 1 0.405/2020 0534 WG145577 U 0.000430 0.0017 1 0.405/2020 0534 WG145577 U 0.000430 0.0017 1 0.405/2020 0534 WG145577 U 0.000642 0.0268 1 0.405/2020 0534 WG145577 U 0.000642 0.0268 1 0.405/2020 0534 WG145577 U 0.000412 0.0134 1 0.405/2020 0534 WG145577 U 0.00045 0.00278 1 0.405/2020 0534 WG145577 U 0.0016 0.00537 1 0.405/2020 0534 WG145577 U 0.0016 0.00537 1 0.405/2020 0534 WG145577 U 0.0016 0.00268 1 0.405/2020 0534 WG145577 U 0.0016 0.00268 1 0.405/2020 0534 WG1

PROJECT: 2t009

SDG: L1205565

1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000725	0.00268	1	04/05/2020 05:34	WG1455717	
Tetrachloroethene	0.0871		0.000752	0.00268	1	04/05/2020 05:34	WG1455717	
Toluene	U		0.00134	0.00537	1	04/05/2020 05:34	WG1455717	
1,2,3-Trichlorobenzene	U		0.000671	0.0134	1	04/05/2020 05:34	WG1455717	
1,2,4-Trichlorobenzene	U		0.00518	0.0134	1	04/05/2020 05:34	WG1455717	
1,1,1-Trichloroethane	U		0.000295	0.00268	1	04/05/2020 05:34	WG1455717	
1,1,2-Trichloroethane	U		0.000948	0.00268	1	04/05/2020 05:34	WG1455717	
Trichloroethene	U		0.000430	0.00107	1	04/05/2020 05:34	WG1455717	
Trichlorofluoromethane	U		0.000537	0.00268	1	04/05/2020 05:34	WG1455717	
1,2,3-Trichloropropane	U		0.00548	0.0134	1	04/05/2020 05:34	WG1455717	
1,2,4-Trimethylbenzene	U		0.00125	0.00537	1	04/05/2020 05:34	WG1455717	
1,2,3-Trimethylbenzene	U		0.00123	0.00537	1	04/05/2020 05:34	WG1455717	
1,3,5-Trimethylbenzene	U		0.00116	0.00537	1	04/05/2020 05:34	WG1455717	
Vinyl chloride	U		0.000733	0.00268	1	04/05/2020 05:34	WG1455717	
Xylenes, Total	U		0.00513	0.00698	1	04/05/2020 05:34	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 05:34	WG1455717	
(S) 4-Bromofluorobenzene	97.8			67.0-138		04/05/2020 05:34	WG1455717	
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		04/05/2020 05:34	WG1455717	

SAMPLE RESULTS - 12 L1205565

ONE LAB. NATIONWIDE.

20

Analyte	Result %	Qualifier	Dilution Analys		Batch			
otal Solids	79.5			8/2020 21:48	WG14569	966		
/olatile Organic Com	pounds (GC/N	∕IS) by Met	:hod 8260	В				
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	U		0.0172	0.0315	1	04/05/2020 05:53	WG1455717	
Acrylonitrile	U		0.00239	0.0157	1	04/05/2020 05:53	WG1455717	
Benzene	U		0.000503	0.00126	1	04/05/2020 05:53	WG1455717	
Bromobenzene	U		0.00132	0.0157	1	04/05/2020 05:53	WG1455717	
Bromodichloromethane	U		0.000991	0.00315	1	04/05/2020 05:53	WG1455717	
Bromoform	U		0.00752	0.0315	1	04/05/2020 05:53	WG1455717	
Bromomethane	U		0.00466	0.0157	1	04/05/2020 05:53	WG1455717	
n-Butylbenzene	U		0.00483	0.0157	1	04/05/2020 05:53	WG1455717	
sec-Butylbenzene	U		0.00318	0.0157	1	04/05/2020 05:53	WG1455717	
ert-Butylbenzene	U		0.00195	0.00629	1	04/05/2020 05:53	WG1455717	
Carbon tetrachloride	U		0.00136	0.00629	1	04/05/2020 05:53	WG1455717	
Chlorobenzene	U		0.000721	0.00315	1	04/05/2020 05:53	WG1455717	
Chlorodibromomethane	U		0.000566	0.00315	1	04/05/2020 05:53	WG1455717	
Chloroethane	U		0.00136	0.00629	1	04/05/2020 05:53	WG1455717	
Chloroform	U		0.000522	0.00315	1	04/05/2020 05:53	WG1455717	
Chloromethane	U		0.00175	0.0157	1	04/05/2020 05:53	WG1455717	
2-Chlorotoluene	U		0.00116	0.00315	1	04/05/2020 05:53	WG1455717	
1-Chlorotoluene	U		0.00142	0.00629	1	04/05/2020 05:53	WG1455717	
l,2-Dibromo-3-Chloropropane	U		0.00642	0.0315	1	04/05/2020 05:53	WG1455717	
l,2-Dibromoethane	U		0.000661	0.00315	1	04/05/2020 05:53	WG1455717	
Dibromomethane	U		0.00126	0.00629	1	04/05/2020 05:53	WG1455717	
l,2-Dichlorobenzene	U		0.00182	0.00629	1	04/05/2020 05:53	WG1455717	
l,3-Dichlorobenzene	U		0.00214	0.00629	1	04/05/2020 05:53	WG1455717	
I,4-Dichlorobenzene	U		0.00248	0.00629	1	04/05/2020 05:53	WG1455717	
Dichlorodifluoromethane	U	<u>J4</u>	0.00103	0.00315	1	04/05/2020 05:53	WG1455717	
l,1-Dichloroethane	U		0.000723	0.00315	1	04/05/2020 05:53	WG1455717	
l,2-Dichloroethane	U		0.000598	0.00315	1	04/05/2020 05:53	WG1455717	
l,1-Dichloroethene	U		0.000629	0.00315	1	04/05/2020 05:53	WG1455717	
cis-1,2-Dichloroethene	U		0.000868	0.00315	1	04/05/2020 05:53	WG1455717	
rans-1,2-Dichloroethene	U		0.00180	0.00629	1	04/05/2020 05:53	WG1455717	
l,2-Dichloropropane	U	<u>J4</u>	0.00160	0.00629	1	04/05/2020 05:53	WG1455717	
l,1-Dichloropropene	U		0.000881	0.00315	1	04/05/2020 05:53	WG1455717	
l,3-Dichloropropane	U		0.00220	0.00629	1	04/05/2020 05:53	WG1455717	
cis-1,3-Dichloropropene	U		0.000853	0.00315	1	04/05/2020 05:53	WG1455717	
rans-1,3-Dichloropropene	U		0.00193	0.00629	1	04/05/2020 05:53	WG1455717	
2,2-Dichloropropane	U		0.000998	0.00315	1	04/05/2020 05:53	WG1455717	
Di-isopropyl ether	U		0.000440	0.00126	1	04/05/2020 05:53	WG1455717	
Ethylbenzene	U		0.000667	0.00315	1	04/05/2020 05:53	WG1455717	
Hexachloro-1,3-butadiene	U		0.0160	0.0315	1	04/05/2020 05:53	WG1455717	
sopropylbenzene	U		0.00109	0.00315	1	04/05/2020 05:53	WG1455717	
o-Isopropyltoluene	U		0.00293	0.00629	1	04/05/2020 05:53	WG1455717	
2-Butanone (MEK)	0.0488	B	0.0157	0.0315	1	04/05/2020 05:53	WG1455717	
Methylene Chloride	U	_	0.00835	0.0315	1	04/05/2020 05:53	WG1455717	
1-Methyl-2-pentanone (MIBK)	U		0.0126	0.0315	1	04/05/2020 05:53	WG1455717	
Methyl tert-butyl ether	U		0.000371	0.00126	1	04/05/2020 05:53	WG1455717	
Naphthalene	U		0.00393	0.0157	1	04/05/2020 05:53	WG1455717	
n-Propylbenzene	U		0.00148	0.00629	1	04/05/2020 05:53	WG1455717	
Styrene	U		0.00343	0.0157	1	04/05/2020 05:53	WG1455717	
I,1,1,2-Tetrachloroethane	U		0.000629	0.00315	1	04/05/2020 05:53	WG1455717	
	U		0.000491	0.00315	1	04/05/2020 05:53	WG1455717	

Weber, Hayes & Associates - CA

PROJECT: 2t009

L1205565

DATE/TIME: 04/10/20 18:37

PAGE 26 of 88

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000849	0.00315	1	04/05/2020 05:53	WG1455717	
Tetrachloroethene	0.0200		0.000881	0.00315	1	04/05/2020 05:53	WG1455717	
Toluene	U		0.00157	0.00629	1	04/05/2020 05:53	WG1455717	
1,2,3-Trichlorobenzene	U		0.000786	0.0157	1	04/05/2020 05:53	WG1455717	
1,2,4-Trichlorobenzene	U		0.00606	0.0157	1	04/05/2020 05:53	WG1455717	
1,1,1-Trichloroethane	U		0.000346	0.00315	1	04/05/2020 05:53	WG1455717	
1,1,2-Trichloroethane	U		0.00111	0.00315	1	04/05/2020 05:53	WG1455717	
Trichloroethene	0.00423		0.000503	0.00126	1	04/05/2020 05:53	WG1455717	
Trichlorofluoromethane	U		0.000629	0.00315	1	04/05/2020 05:53	WG1455717	
1,2,3-Trichloropropane	U		0.00642	0.0157	1	04/05/2020 05:53	WG1455717	
1,2,4-Trimethylbenzene	U		0.00146	0.00629	1	04/05/2020 05:53	WG1455717	
1,2,3-Trimethylbenzene	U		0.00145	0.00629	1	04/05/2020 05:53	WG1455717	
1,3,5-Trimethylbenzene	U		0.00136	0.00629	1	04/05/2020 05:53	WG1455717	
Vinyl chloride	U		0.000859	0.00315	1	04/05/2020 05:53	WG1455717	
Xylenes, Total	U		0.00601	0.00818	1	04/05/2020 05:53	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 05:53	WG1455717	
(S) 4-Bromofluorobenzene	98.4			67.0-138		04/05/2020 05:53	WG1455717	
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		04/05/2020 05:53	WG1455717	

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

2

nalyte Dtal Solids	85.5		date /		WG1456966				
Juli Solius	00.0		1 04/06	/2020 21:48	WG14503	000			
olatile Organic Com	pounds (GC/	MS) by Me	thod 8260	В					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
nalyte	mg/kg		mg/kg	mg/kg		date / time			
cetone	U		0.0160	0.0292	1	04/05/2020 06:12	WG1455717		
crylonitrile	U		0.00222	0.0146	1	04/05/2020 06:12	WG1455717		
enzene	U		0.000468	0.00117	1	04/05/2020 06:12	WG1455717		
romobenzene	U		0.00123	0.0146	1	04/05/2020 06:12	WG1455717		
romodichloromethane	U		0.000922	0.00292	1	04/05/2020 06:12	WG1455717		
romoform	U		0.00700	0.0292	1	04/05/2020 06:12	WG1455717		
romomethane	U		0.00433	0.0146	1	04/05/2020 06:12	WG1455717		
Butylbenzene	U		0.00449	0.0146	1	04/05/2020 06:12	WG1455717		
ec-Butylbenzene	U		0.00296	0.0146	1	04/05/2020 06:12	WG1455717		
rt-Butylbenzene	U		0.00181	0.00585	1	04/05/2020 06:12	WG1455717		
arbon tetrachloride	U		0.00126	0.00585	1	04/05/2020 06:12	WG1455717		
hlorobenzene	U		0.000670	0.00292	1	04/05/2020 06:12	WG1455717		
hlorodibromomethane	U		0.000526	0.00292	1	04/05/2020 06:12	WG1455717		
hloroethane	U		0.00126	0.00585	1	04/05/2020 06:12	WG1455717		
hloroform	U		0.000485	0.00292	1	04/05/2020 06:12	WG1455717		
hloromethane	U		0.00163	0.0146	1	04/05/2020 06:12	WG1455717		
Chlorotoluene	U		0.00108	0.00292	1	04/05/2020 06:12	WG1455717		
Chlorotoluene	U		0.00132	0.00585	1	04/05/2020 06:12	WG1455717		
2-Dibromo-3-Chloropropane	U		0.00597	0.0292	1	04/05/2020 06:12	WG1455717		
2-Dibromoethane	U		0.000614	0.00292	1	04/05/2020 06:12	WG1455717		
ibromomethane	U		0.00117	0.00585	1	04/05/2020 06:12	WG1455717		
2-Dichlorobenzene	U		0.00170	0.00585	1	04/05/2020 06:12	WG1455717		
3-Dichlorobenzene	U		0.00199	0.00585	1	04/05/2020 06:12	WG1455717		
4-Dichlorobenzene	U		0.00230	0.00585	1	04/05/2020 06:12	WG1455717		
ichlorodifluoromethane	U	J4	0.000957	0.00292	1	04/05/2020 06:12	WG1455717		
1-Dichloroethane	U		0.000673	0.00292	1	04/05/2020 06:12	WG1455717		
2-Dichloroethane	U		0.000556	0.00292	1	04/05/2020 06:12	WG1455717		
1-Dichloroethene	U		0.000585	0.00292	1	04/05/2020 06:12	WG1455717		
s-1,2-Dichloroethene	U		0.000807	0.00292	1	04/05/2020 06:12	WG1455717		
ans-1,2-Dichloroethene	U		0.00167	0.00585	1	04/05/2020 06:12	WG1455717		
2-Dichloropropane	U	J4	0.00149	0.00585	1	04/05/2020 06:12	WG1455717		
1-Dichloropropene	U		0.000819	0.00292	1	04/05/2020 06:12	WG1455717		
3-Dichloropropane	U		0.00205	0.00585	1	04/05/2020 06:12	WG1455717		
s-1,3-Dichloropropene	U		0.000793	0.00292	1	04/05/2020 06:12	WG1455717		
ans-1,3-Dichloropropene	U		0.00179	0.00585	1	04/05/2020 06:12	WG1455717		
2-Dichloropropane	U		0.000928	0.00292	1	04/05/2020 06:12	WG1455717		
i-isopropyl ether	U		0.000409	0.00117	1	04/05/2020 06:12	WG1455717		
hylbenzene	U		0.000620	0.00292	1	04/05/2020 06:12	WG1455717		
exachloro-1,3-butadiene	U		0.0149	0.0292	1	04/05/2020 06:12	WG1455717		
opropylbenzene	U		0.00101	0.00292	1	04/05/2020 06:12	WG1455717		
Isopropyltoluene	U		0.00273	0.00585	1	04/05/2020 06:12	WG1455717		
Butanone (MEK)	0.0475	B	0.0146	0.0292	1	04/05/2020 06:12	WG1455717		
ethylene Chloride	U	_	0.00777	0.0292	1	04/05/2020 06:12	WG1455717		
Methyl-2-pentanone (MIBK)	U		0.0117	0.0292	1	04/05/2020 06:12	WG1455717		
ethyl tert-butyl ether	U		0.000345	0.00117	1	04/05/2020 06:12	WG1455717		
aphthalene	U		0.00365	0.0146	1	04/05/2020 06:12	WG1455717		
Propylbenzene	U		0.00138	0.00585	1	04/05/2020 06:12	WG1455717		
yrene	U		0.00138	0.0146	1	04/05/2020 06:12	WG1455717		
1,1,2-Tetrachloroethane	U		0.000585	0.00292	1	04/05/2020 06:12	WG1455717		
1,2,2-Tetrachloroethane	U		0.000385	0.00292	1	04/05/2020 06:12	WG1455717		

Weber, Hayes & Associates - CA

PROJECT: 2t009 SDG: L1205565

PAGE: 28 of 88

股

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		L
1,1,2-Trichlorotrifluoroethane	U		0.000790	0.00292	1	04/05/2020 06:12	WG1455717	
Tetrachloroethene	0.484		0.000819	0.00292	1	04/05/2020 06:12	WG1455717	
Toluene	U		0.00146	0.00585	1	04/05/2020 06:12	WG1455717	[
1,2,3-Trichlorobenzene	U		0.000731	0.0146	1	04/05/2020 06:12	WG1455717	:
1,2,4-Trichlorobenzene	U		0.00564	0.0146	1	04/05/2020 06:12	WG1455717	L
1,1,1-Trichloroethane	U		0.000322	0.00292	1	04/05/2020 06:12	WG1455717	
1,1,2-Trichloroethane	U		0.00103	0.00292	1	04/05/2020 06:12	WG1455717	
Trichloroethene	0.00253		0.000468	0.00117	1	04/05/2020 06:12	WG1455717	
Trichlorofluoromethane	U		0.000585	0.00292	1	04/05/2020 06:12	WG1455717	
1,2,3-Trichloropropane	U		0.00597	0.0146	1	04/05/2020 06:12	WG1455717	
1,2,4-Trimethylbenzene	U		0.00136	0.00585	1	04/05/2020 06:12	WG1455717	
1,2,3-Trimethylbenzene	U		0.00135	0.00585	1	04/05/2020 06:12	WG1455717	
1,3,5-Trimethylbenzene	U		0.00126	0.00585	1	04/05/2020 06:12	WG1455717	Г
Vinyl chloride	U		0.000799	0.00292	1	04/05/2020 06:12	WG1455717	
Xylenes, Total	U		0.00559	0.00760	1	04/05/2020 06:12	WG1455717	L
(S) Toluene-d8	106			75.0-131		04/05/2020 06:12	WG1455717	
(S) 4-Bromofluorobenzene	96.9			67.0-138		04/05/2020 06:12	WG1455717	
(S) 1,2-Dichloroethane-d4	90.1			70.0-130		04/05/2020 06:12	WG1455717	

SAMPLE RESULTS - 14 L1205565

Тс

Total Solids by Method 2540 G-2011 Result Qualifier Dilution Analysis Batch Analyte % date / time Total Solids 91.6 1 04/08/2020 21:48 WG1456966 Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
analyte	mg/kg		mg/kg	mg/kg		date / time		
cetone	U		0.0150	0.0273	1	04/05/2020 06:31	WG1455717	
crylonitrile	U		0.00207	0.0137	1	04/05/2020 06:31	WG1455717	
enzene	U		0.000437	0.00109	1	04/05/2020 06:31	WG1455717	
romobenzene	U		0.00115	0.0137	1	04/05/2020 06:31	WG1455717	
romodichloromethane	U		0.000860	0.00273	1	04/05/2020 06:31	WG1455717	
romoform	U		0.00653	0.0273	1	04/05/2020 06:31	WG1455717	
romomethane	U		0.00404	0.0137	1	04/05/2020 06:31	WG1455717	
Butylbenzene	U		0.00419	0.0137	1	04/05/2020 06:31	WG1455717	
ec-Butylbenzene	U		0.00276	0.0137	1	04/05/2020 06:31	WG1455717	
rt-Butylbenzene	U		0.00169	0.00546	1	04/05/2020 06:31	WG1455717	
arbon tetrachloride	U		0.00118	0.00546	1	04/05/2020 06:31	WG1455717	
hlorobenzene	U		0.000626	0.00273	1	04/05/2020 06:31	WG1455717	
nlorodibromomethane	U		0.000491	0.00273	1	04/05/2020 06:31	WG1455717	
nloroethane	U		0.00118	0.00546	1	04/05/2020 06:31	WG1455717	
loroform	U		0.000453	0.00273	1	04/05/2020 06:31	WG1455717	
hloromethane	U		0.00152	0.0137	1	04/05/2020 06:31	WG1455717	
Chlorotoluene	U		0.00100	0.00273	1	04/05/2020 06:31	WG1455717	
Chlorotoluene	U		0.00123	0.00546	1	04/05/2020 06:31	WG1455717	
2-Dibromo-3-Chloropropane	U		0.00557	0.0273	1	04/05/2020 06:31	WG1455717	
2-Dibromoethane	U		0.000573	0.00273	1	04/05/2020 06:31	WG1455717	
promomethane	U		0.00109	0.00546	1	04/05/2020 06:31	WG1455717	
2-Dichlorobenzene	U		0.00158	0.00546	1	04/05/2020 06:31	WG1455717	
B-Dichlorobenzene	U		0.00186	0.00546	1	04/05/2020 06:31	WG1455717	
l-Dichlorobenzene	U		0.00215	0.00546	1	04/05/2020 06:31	WG1455717	
chlorodifluoromethane	U	<u>J4</u>	0.000893	0.00273	1	04/05/2020 06:31	WG1455717	
-Dichloroethane	U	_	0.000628	0.00273	1	04/05/2020 06:31	WG1455717	
2-Dichloroethane	U		0.000519	0.00273	1	04/05/2020 06:31	WG1455717	
-Dichloroethene	U		0.000546	0.00273	1	04/05/2020 06:31	WG1455717	
s-1,2-Dichloroethene	U		0.000753	0.00273	1	04/05/2020 06:31	WG1455717	
ans-1,2-Dichloroethene	U		0.00156	0.00546	1	04/05/2020 06:31	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00139	0.00546	1	04/05/2020 06:31	WG1455717	
-Dichloropropene	U	_	0.000764	0.00273	1	04/05/2020 06:31	WG1455717	
B-Dichloropropane	U		0.00191	0.00546	1	04/05/2020 06:31	WG1455717	
s-1,3-Dichloropropene	U		0.000740	0.00273	1	04/05/2020 06:31	WG1455717	
ans-1,3-Dichloropropene	U		0.00167	0.00546	1	04/05/2020 06:31	WG1455717	
2-Dichloropropane	U		0.000866	0.00273	1	04/05/2020 06:31	WG1455717	
-isopropyl ether	U		0.000382	0.00109	1	04/05/2020 06:31	WG1455717	
nylbenzene	U		0.000579	0.00273	1	04/05/2020 06:31	WG1455717	
exachloro-1,3-butadiene	U		0.0139	0.0273	1	04/05/2020 06:31	WG1455717	
opropylbenzene	U		0.000942	0.00273	1	04/05/2020 06:31	WG1455717	
Isopropyltoluene	U		0.00254	0.00546	1	04/05/2020 06:31	WG1455717	
Butanone (MEK)	0.0247	<u>BJ</u>	0.0137	0.0273	1	04/05/2020 06:31	WG1455717	
ethylene Chloride	U	_	0.00725	0.0273	1	04/05/2020 06:31	WG1455717	
Methyl-2-pentanone (MIBK)	U		0.0109	0.0273	1	04/05/2020 06:31	WG1455717	
ethyl tert-butyl ether	U		0.000322	0.00109	1	04/05/2020 06:31	WG1455717	
aphthalene	U		0.00341	0.0137	1	04/05/2020 06:31	WG1455717	
Propylbenzene	U		0.00129	0.00546	1	04/05/2020 06:31	WG1455717	
yrene	U		0.00298	0.0137	1	04/05/2020 06:31	WG1455717	
,1,2-Tetrachloroethane	U		0.000546	0.00273	1	04/05/2020 06:31	WG1455717	
,2,2-Tetrachloroethane	U		0.000426	0.00273	1	04/05/2020 06:31	WG1455717	

PROJECT: 2t009

SDG: L1205565

PAGE: 30 of 88

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000737	0.00273	1	04/05/2020 06:31	WG1455717	
Tetrachloroethene	0.103		0.000764	0.00273	1	04/05/2020 06:31	WG1455717	
Toluene	U		0.00137	0.00546	1	04/05/2020 06:31	WG1455717	
1,2,3-Trichlorobenzene	U		0.000683	0.0137	1	04/05/2020 06:31	WG1455717	
1,2,4-Trichlorobenzene	U		0.00526	0.0137	1	04/05/2020 06:31	WG1455717	
1,1,1-Trichloroethane	U		0.000300	0.00273	1	04/05/2020 06:31	WG1455717	
1,1,2-Trichloroethane	U		0.000964	0.00273	1	04/05/2020 06:31	WG1455717	
Trichloroethene	U		0.000437	0.00109	1	04/05/2020 06:31	WG1455717	
Trichlorofluoromethane	U		0.000546	0.00273	1	04/05/2020 06:31	WG1455717	
1,2,3-Trichloropropane	U		0.00557	0.0137	1	04/05/2020 06:31	WG1455717	
1,2,4-Trimethylbenzene	U		0.00127	0.00546	1	04/05/2020 06:31	WG1455717	
1,2,3-Trimethylbenzene	U		0.00126	0.00546	1	04/05/2020 06:31	WG1455717	
1,3,5-Trimethylbenzene	U		0.00118	0.00546	1	04/05/2020 06:31	WG1455717	
Vinyl chloride	U		0.000746	0.00273	1	04/05/2020 06:31	WG1455717	
Xylenes, Total	U		0.00522	0.00710	1	04/05/2020 06:31	WG1455717	
(S) Toluene-d8	107			75.0-131		04/05/2020 06:31	WG1455717	
(S) 4-Bromofluorobenzene	97.4			67.0-138		04/05/2020 06:31	WG1455717	
(S) 1,2-Dichloroethane-d4	93.0			70.0-130		04/05/2020 06:31	WG1455717	

SDG: L1205565

SAMPLE RESULTS - 15 L1205565

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	80.9		1	04/08/2020 21:48	WG1456966	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result %	Qualifier	Dilution Analysis date / time		Batch				
otal Solids	80.9			/08/2020 21:48	WG1456	966			
/olatile Organic Com	oounds (GC/	MS) by Me	ethod 826	юв					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			
cetone	U		0.0169	0.0309	1	04/05/2020 06:50	WG1455717		
crylonitrile	U		0.00235	0.0155	1	04/05/2020 06:50	WG1455717		
enzene	U		0.000494	0.00124	1	04/05/2020 06:50	WG1455717		
romobenzene	U		0.00130	0.0155	1	04/05/2020 06:50	WG1455717		
romodichloromethane	U		0.000974	0.00309	1	04/05/2020 06:50	WG1455717		
romoform	U		0.00739	0.0309	1	04/05/2020 06:50	WG1455717		
romomethane	U		0.00457	0.0155	1	04/05/2020 06:50	WG1455717		
-Butylbenzene	U		0.00475	0.0155	1	04/05/2020 06:50	WG1455717		
ec-Butylbenzene	U		0.00313	0.0155	1	04/05/2020 06:50	WG1455717		
ert-Butylbenzene	U		0.00192	0.00618	1	04/05/2020 06:50	WG1455717		
arbon tetrachloride	U		0.00133	0.00618	1	04/05/2020 06:50	WG1455717		
hlorobenzene	U		0.000708	0.00309	1	04/05/2020 06:50	WG1455717		
hlorodibromomethane	U		0.000556	0.00309	1	04/05/2020 06:50	WG1455717		
hloroethane	U		0.00133	0.00618	1	04/05/2020 06:50	WG1455717		
hloroform	U		0.000513	0.00309	1	04/05/2020 06:50	WG1455717		
hloromethane	U		0.00172	0.0155	1	04/05/2020 06:50	WG1455717		
-Chlorotoluene	U		0.00114	0.00309	1	04/05/2020 06:50	WG1455717		
-Chlorotoluene	U		0.00140	0.00618	1	04/05/2020 06:50	WG1455717		
2-Dibromo-3-Chloropropane	U		0.00630	0.0309	1	04/05/2020 06:50	WG1455717		
2-Dibromoethane	U		0.000649	0.00309	1	04/05/2020 06:50	WG1455717		
ibromomethane	U		0.00124	0.00618	1	04/05/2020 06:50	WG1455717		
2-Dichlorobenzene	U		0.00179	0.00618	1	04/05/2020 06:50	WG1455717		
3-Dichlorobenzene	U		0.00210	0.00618	1	04/05/2020 06:50	WG1455717		
4-Dichlorobenzene	U		0.00244	0.00618	1	04/05/2020 06:50	WG1455717		
Vichlorodifluoromethane	U	<u>J4</u>	0.00101	0.00309	1	04/05/2020 06:50	WG1455717		
,1-Dichloroethane	U		0.000711	0.00309	1	04/05/2020 06:50	WG1455717		
,2-Dichloroethane	U		0.000587	0.00309	1	04/05/2020 06:50	WG1455717		
,1-Dichloroethene	U		0.000618	0.00309	1	04/05/2020 06:50	WG1455717		
is-1,2-Dichloroethene	U		0.000853	0.00309	1	04/05/2020 06:50	WG1455717		
rans-1,2-Dichloroethene	U		0.00177	0.00618	1	04/05/2020 06:50	WG1455717		
2-Dichloropropane	U	<u>J4</u>	0.00157	0.00618	1	04/05/2020 06:50	WG1455717		
,1-Dichloropropene	U		0.000865	0.00309	1	04/05/2020 06:50	WG1455717		
,3-Dichloropropane	U		0.00216	0.00618	1	04/05/2020 06:50	WG1455717		
is-1,3-Dichloropropene	U		0.000838	0.00309	1	04/05/2020 06:50	WG1455717		
ans-1,3-Dichloropropene	U		0.00189	0.00618	1	04/05/2020 06:50	WG1455717		
,2-Dichloropropane	U		0.000980	0.00309	1	04/05/2020 06:50	WG1455717		
i-isopropyl ether	U		0.000433	0.00124	1	04/05/2020 06:50	WG1455717		
thylbenzene	U		0.000655	0.00309	1	04/05/2020 06:50	WG1455717		
lexachloro-1,3-butadiene	U		0.0157	0.0309	1	04/05/2020 06:50	WG1455717		
sopropylbenzene	U		0.00107	0.00309	1	04/05/2020 06:50	WG1455717		
-Isopropyltoluene	U		0.00288	0.00618	1	04/05/2020 06:50	WG1455717		
-Butanone (MEK)	0.0607	B	0.0155	0.0309	1	04/05/2020 06:50	WG1455717		
lethylene Chloride	U	_	0.00821	0.0309	1	04/05/2020 06:50	WG1455717		
-Methyl-2-pentanone (MIBK)	U		0.0124	0.0309	1	04/05/2020 06:50	WG1455717		
lethyl tert-butyl ether	U		0.000365	0.00124	1	04/05/2020 06:50	WG1455717		
laphthalene	U		0.00386	0.0155	1	04/05/2020 06:50	WG1455717		
-Propylbenzene	U		0.00146	0.00618	1	04/05/2020 06:50	WG1455717		
tyrene	U		0.00337	0.0155	1	04/05/2020 06:50	WG1455717		
,1,1,2-Tetrachloroethane	U		0.000618	0.00309	1	04/05/2020 06:50	WG1455717		
1,1,2,2-Tetrachloroethane	U		0.000482	0.00309	1	04/05/2020 06:50	WG1455717		

PROJECT: 2t009

SDG: L1205565

1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000834	0.00309	1	04/05/2020 06:50	WG1455717	
Tetrachloroethene	0.00213	J	0.000865	0.00309	1	04/05/2020 06:50	WG1455717	
Toluene	U		0.00155	0.00618	1	04/05/2020 06:50	WG1455717	
1,2,3-Trichlorobenzene	U		0.000773	0.0155	1	04/05/2020 06:50	WG1455717	
1,2,4-Trichlorobenzene	U		0.00596	0.0155	1	04/05/2020 06:50	WG1455717	
1,1,1-Trichloroethane	U		0.000340	0.00309	1	04/05/2020 06:50	WG1455717	
1,1,2-Trichloroethane	U		0.00109	0.00309	1	04/05/2020 06:50	WG1455717	
Trichloroethene	U		0.000494	0.00124	1	04/05/2020 06:50	WG1455717	
Trichlorofluoromethane	U		0.000618	0.00309	1	04/05/2020 06:50	WG1455717	
1,2,3-Trichloropropane	U		0.00630	0.0155	1	04/05/2020 06:50	WG1455717	
1,2,4-Trimethylbenzene	U		0.00143	0.00618	1	04/05/2020 06:50	WG1455717	
1,2,3-Trimethylbenzene	U		0.00142	0.00618	1	04/05/2020 06:50	WG1455717	
1,3,5-Trimethylbenzene	U		0.00133	0.00618	1	04/05/2020 06:50	WG1455717	
Vinyl chloride	U		0.000844	0.00309	1	04/05/2020 06:50	WG1455717	
Xylenes, Total	U		0.00591	0.00803	1	04/05/2020 06:50	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 06:50	WG1455717	
(S) 4-Bromofluorobenzene	97.4			67.0-138		04/05/2020 06:50	WG1455717	
(S) 1,2-Dichloroethane-d4	87.6			70.0-130		04/05/2020 06:50	WG1455717	

SAMPLE RESULTS - 16 L1205565

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				Ср		
Analyte	%			date / time					2		
Total Solids	84.8		1	04/08/2020 21:48	WG1456	966			Tc		
Volatile Organic	Compounds (GC	/MS) by Me	ethod 8	260B					³ Ss		
	Result (dry)	Qualifier	MDL (dry) RDL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn		
Acetone	U		0.0162	0.0295	1	04/05/2020 07:09	WG1455717				
Acadonitrilo	11		0.002	0.0147	1	04/05/2020 07:00	WC14EE717				

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	4
Acetone	U		0.0162	0.0295	1	04/05/2020 07:09	WG1455717]
Acrylonitrile	U		0.00224	0.0233	1	04/05/2020 07:09	WG1455717	
Benzene	U		0.000472	0.00118	1	04/05/2020 07:09	WG1455717	5
Bromobenzene	U		0.00124	0.0147	1	04/05/2020 07:09	WG1455717	
Bromodichloromethane	U		0.000930	0.00295	1	04/05/2020 07:09	WG1455717	6
Bromoform	U		0.00705	0.0295	1	04/05/2020 07:09	WG1455717	
Bromomethane	U		0.00703	0.0295	1	04/05/2020 07:09	WG1455717	
n-Butylbenzene	U		0.00453	0.0147	1	04/05/2020 07:09	WG1455717	7
sec-Butylbenzene	U		0.00298	0.0147	1	04/05/2020 07:09	WG1455717	
ert-Butylbenzene	U		0.00183	0.00590	1	04/05/2020 07:09	WG1455717	8
Carbon tetrachloride	U		0.00103	0.00590	1	04/05/2020 07:09	WG1455717	
Chlorobenzene	U		0.000676	0.00295	1	04/05/2020 07:09	WG1455717	L
Chlorodibromomethane	U		0.000531	0.00295	1	04/05/2020 07:09	WG1455717	9
Chloroethane	U		0.000551	0.00295	1	04/05/2020 07:09	WG1455717	
			0.000490	0.00390				
Chloroform	U		0.000490	0.00295	1	04/05/2020 07:09 04/05/2020 07:09	WG1455717 WG1455717	
Chloromethane								
-Chlorotoluene	U		0.00109	0.00295	1	04/05/2020 07:09	WG1455717	
-Chlorotoluene	U		0.00133	0.00590	1	04/05/2020 07:09	WG1455717	
2-Dibromo-3-Chloropropane	U		0.00602	0.0295	1	04/05/2020 07:09	WG1455717	
2-Dibromoethane	U		0.000619	0.00295	1	04/05/2020 07:09	WG1455717	
ibromomethane	U		0.00118	0.00590	1	04/05/2020 07:09	WG1455717	
2-Dichlorobenzene	U		0.00171	0.00590	1	04/05/2020 07:09	WG1455717	
3-Dichlorobenzene	U		0.00201	0.00590	1	04/05/2020 07:09	WG1455717	
4-Dichlorobenzene	U		0.00232	0.00590	1	04/05/2020 07:09	WG1455717	
ichlorodifluoromethane	U	<u>J4</u>	0.000965	0.00295	1	04/05/2020 07:09	WG1455717	
1-Dichloroethane	U		0.000678	0.00295	1	04/05/2020 07:09	WG1455717	
2-Dichloroethane	U		0.000560	0.00295	1	04/05/2020 07:09	WG1455717	
1-Dichloroethene	U		0.000590	0.00295	1	04/05/2020 07:09	WG1455717	
is-1,2-Dichloroethene	U		0.000814	0.00295	1	04/05/2020 07:09	WG1455717	
ans-1,2-Dichloroethene	U		0.00169	0.00590	1	04/05/2020 07:09	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00150	0.00590	1	04/05/2020 07:09	WG1455717	
1-Dichloropropene	U		0.000826	0.00295	1	04/05/2020 07:09	WG1455717	
3-Dichloropropane	U		0.00206	0.00590	1	04/05/2020 07:09	WG1455717	
is-1,3-Dichloropropene	U		0.000800	0.00295	1	04/05/2020 07:09	WG1455717	
ans-1,3-Dichloropropene	U		0.00180	0.00590	1	04/05/2020 07:09	WG1455717	
,2-Dichloropropane	U		0.000935	0.00295	1	04/05/2020 07:09	WG1455717	
i-isopropyl ether	U		0.000413	0.00118	1	04/05/2020 07:09	WG1455717	
thylbenzene	U		0.000625	0.00295	1	04/05/2020 07:09	WG1455717	
lexachloro-1,3-butadiene	U		0.0150	0.0295	1	04/05/2020 07:09	WG1455717	
sopropylbenzene	U		0.00102	0.00295	1	04/05/2020 07:09	WG1455717	
-Isopropyltoluene	U		0.00275	0.00590	1	04/05/2020 07:09	WG1455717	
-Butanone (MEK)	0.0438	B	0.0147	0.0295	1	04/05/2020 07:09	WG1455717	
lethylene Chloride	U		0.00783	0.0295	1	04/05/2020 07:09	WG1455717	
-Methyl-2-pentanone (MIBK)	U		0.0118	0.0295	1	04/05/2020 07:09	WG1455717	
lethyl tert-butyl ether	U		0.000348	0.00118	1	04/05/2020 07:09	WG1455717	
laphthalene	U		0.00368	0.0147	1	04/05/2020 07:09	WG1455717	
-Propylbenzene	U		0.00139	0.00590	1	04/05/2020 07:09	WG1455717	
tyrene	U		0.00322	0.0147	1	04/05/2020 07:09	WG1455717	
1,1,2-Tetrachloroethane	U		0.000590	0.00295	1	04/05/2020 07:09	WG1455717	
1,2,2-Tetrachloroethane	U		0.000460	0.00295	1	04/05/2020 07:09	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

PAGE: 34 of 88

SAMPLE RESULTS - 16

1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000796	0.00295	1	04/05/2020 07:09	WG1455717	
Tetrachloroethene	0.00500		0.000826	0.00295	1	04/05/2020 07:09	WG1455717	
Toluene	U		0.00147	0.00590	1	04/05/2020 07:09	WG1455717	
1,2,3-Trichlorobenzene	U		0.000737	0.0147	1	04/05/2020 07:09	WG1455717	
1,2,4-Trichlorobenzene	U		0.00569	0.0147	1	04/05/2020 07:09	WG1455717	
1,1,1-Trichloroethane	U		0.000324	0.00295	1	04/05/2020 07:09	WG1455717	
1,1,2-Trichloroethane	U		0.00104	0.00295	1	04/05/2020 07:09	WG1455717	
Trichloroethene	U		0.000472	0.00118	1	04/05/2020 07:09	WG1455717	
Trichlorofluoromethane	U		0.000590	0.00295	1	04/05/2020 07:09	WG1455717	
1,2,3-Trichloropropane	U		0.00602	0.0147	1	04/05/2020 07:09	WG1455717	
1,2,4-Trimethylbenzene	U		0.00137	0.00590	1	04/05/2020 07:09	WG1455717	
1,2,3-Trimethylbenzene	U		0.00136	0.00590	1	04/05/2020 07:09	WG1455717	
1,3,5-Trimethylbenzene	U		0.00127	0.00590	1	04/05/2020 07:09	WG1455717	
Vinyl chloride	U		0.000806	0.00295	1	04/05/2020 07:09	WG1455717	
Xylenes, Total	U		0.00564	0.00767	1	04/05/2020 07:09	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 07:09	WG1455717	
(S) 4-Bromofluorobenzene	99.7			67.0-138		04/05/2020 07:09	WG1455717	
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		04/05/2020 07:09	WG1455717	

SAMPLE RESULTS - 17 L1205565

P

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time			,
Total Solids	91.2		1	04/08/2020 21:48	WG1456966	2	Т

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result %	Qualifier		alysis :e / time	Batch			
Fotal Solids	91.2			/08/2020 21:48	WG1456	966		
/olatile Organic Com	oounds (GC/	(MS) by Me	thod 826	OB				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0150	0.0274	1	04/05/2020 07:28	WG1455717	
crylonitrile	U		0.00208	0.0137	1	04/05/2020 07:28	WG1455717	
lenzene	U		0.000439	0.00110	1	04/05/2020 07:28	WG1455717	
romobenzene	U		0.00115	0.0137	1	04/05/2020 07:28	WG1455717	
romodichloromethane	U		0.000864	0.00274	1	04/05/2020 07:28	WG1455717	
romoform	U		0.00656	0.0274	1	04/05/2020 07:28	WG1455717	
romomethane	U		0.00406	0.0137	1	04/05/2020 07:28	WG1455717	
-Butylbenzene	U		0.00421	0.0137	1	04/05/2020 07:28	WG1455717	
ec-Butylbenzene	U		0.00421	0.0137	1	04/05/2020 07:28	WG1455717	
,	U		0.00277		1			
ert-Butylbenzene				0.00548		04/05/2020 07:28	WG1455717	
Carbon tetrachloride	U		0.00118	0.00548	1	04/05/2020 07:28	WG1455717	
hlorobenzene	U		0.000628	0.00274	1	04/05/2020 07:28	WG1455717	
hlorodibromomethane	U		0.000493	0.00274	1	04/05/2020 07:28	WG1455717	
hloroethane	U		0.00118	0.00548	1	04/05/2020 07:28	WG1455717	
hloroform	U		0.000455	0.00274	1	04/05/2020 07:28	WG1455717	
hloromethane	U		0.00152	0.0137	1	04/05/2020 07:28	WG1455717	
-Chlorotoluene	U		0.00101	0.00274	1	04/05/2020 07:28	WG1455717	
-Chlorotoluene	U		0.00124	0.00548	1	04/05/2020 07:28	WG1455717	
2-Dibromo-3-Chloropropane	U		0.00559	0.0274	1	04/05/2020 07:28	WG1455717	
2-Dibromoethane	U		0.000576	0.00274	1	04/05/2020 07:28	WG1455717	
ibromomethane	U		0.00110	0.00548	1	04/05/2020 07:28	WG1455717	
2-Dichlorobenzene	U		0.00159	0.00548	1	04/05/2020 07:28	WG1455717	
3-Dichlorobenzene	U		0.00186	0.00548	1	04/05/2020 07:28	WG1455717	
4-Dichlorobenzene	U		0.00216	0.00548	1	04/05/2020 07:28	WG1455717	
vichlorodifluoromethane	U	<u>J4</u>	0.000897	0.00274	1	04/05/2020 07:28	WG1455717	
1-Dichloroethane	U	_	0.000630	0.00274	1	04/05/2020 07:28	WG1455717	
,2-Dichloroethane	U		0.000521	0.00274	1	04/05/2020 07:28	WG1455717	
1-Dichloroethene	U		0.000548	0.00274	1	04/05/2020 07:28	WG1455717	
is-1,2-Dichloroethene	U		0.000756	0.00274	1	04/05/2020 07:28	WG1455717	
ans-1,2-Dichloroethene	U		0.00157	0.00548	1	04/05/2020 07:28	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00139	0.00548	1	04/05/2020 07:28	WG1455717	
1-Dichloropropene	U	<u> </u>	0.000767	0.00274	1	04/05/2020 07:28	WG1455717	
3-Dichloropropane	U		0.00192	0.00548	1	04/05/2020 07:28	WG1455717	
s-1,3-Dichloropropene	U		0.000743	0.00274	1	04/05/2020 07:28	WG1455717	
ans-1,3-Dichloropropene	U		0.000743	0.00274	1	04/05/2020 07:28	WG1455717	
,2-Dichloropropane	U		0.00188	0.00548	1	04/05/2020 07:28	WG1455717	
ii-isopropyl ether	U		0.000384	0.00110	1	04/05/2020 07:28	WG1455717	
thylbenzene	U		0.000581	0.00274	1	04/05/2020 07:28	WG1455717	
lexachloro-1,3-butadiene	U		0.0139	0.0274	1	04/05/2020 07:28	WG1455717	
sopropylbenzene	U		0.000946	0.00274	1	04/05/2020 07:28	WG1455717	
-lsopropyltoluene	U		0.00255	0.00548	1	04/05/2020 07:28	WG1455717	
-Butanone (MEK)	0.0386	B	0.0137	0.0274	1	04/05/2020 07:28	WG1455717	
lethylene Chloride	U		0.00728	0.0274	1	04/05/2020 07:28	WG1455717	
-Methyl-2-pentanone (MIBK)	U		0.0110	0.0274	1	04/05/2020 07:28	WG1455717	
lethyl tert-butyl ether	U		0.000323	0.00110	1	04/05/2020 07:28	WG1455717	
laphthalene	U		0.00342	0.0137	1	04/05/2020 07:28	WG1455717	
-Propylbenzene	U		0.00129	0.00548	1	04/05/2020 07:28	WG1455717	
tyrene	U		0.00299	0.0137	1	04/05/2020 07:28	WG1455717	
,1,1,2-Tetrachloroethane	U		0.000548	0.00274	1	04/05/2020 07:28	WG1455717	
,1,2,2-Tetrachloroethane	U		0.000428	0.00274	1	04/05/2020 07:28	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000740	0.00274	1	04/05/2020 07:28	WG1455717	
Tetrachloroethene	0.00137	J	0.000767	0.00274	1	04/05/2020 07:28	WG1455717	
Toluene	0.00375	J	0.00137	0.00548	1	04/05/2020 07:28	WG1455717	
1,2,3-Trichlorobenzene	U		0.000685	0.0137	1	04/05/2020 07:28	WG1455717	
1,2,4-Trichlorobenzene	U		0.00528	0.0137	1	04/05/2020 07:28	WG1455717	
1,1,1-Trichloroethane	U		0.000301	0.00274	1	04/05/2020 07:28	WG1455717	
1,1,2-Trichloroethane	U		0.000968	0.00274	1	04/05/2020 07:28	WG1455717	
Trichloroethene	U		0.000439	0.00110	1	04/05/2020 07:28	WG1455717	
Trichlorofluoromethane	U		0.000548	0.00274	1	04/05/2020 07:28	WG1455717	
1,2,3-Trichloropropane	U		0.00559	0.0137	1	04/05/2020 07:28	WG1455717	
1,2,4-Trimethylbenzene	U		0.00127	0.00548	1	04/05/2020 07:28	WG1455717	
1,2,3-Trimethylbenzene	U		0.00126	0.00548	1	04/05/2020 07:28	WG1455717	
1,3,5-Trimethylbenzene	U		0.00118	0.00548	1	04/05/2020 07:28	WG1455717	
Vinyl chloride	U		0.000749	0.00274	1	04/05/2020 07:28	WG1455717	
Xylenes, Total	U		0.00524	0.00713	1	04/05/2020 07:28	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 07:28	WG1455717	
(S) 4-Bromofluorobenzene	98.2			67.0-138		04/05/2020 07:28	WG1455717	
(S) 1,2-Dichloroethane-d4	90.6			70.0-130		04/05/2020 07:28	WG1455717	

SAMPLE RESULTS - 18 L1205565

10

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	81.2		1	04/08/2020 21:48	WG1456966	ΤC

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyto	Result %	Qualifier	Dilution Analy date /		Batch			
Analyte Fotal Solids	81.2			/2020 21:48	WG1456	966		
/alatila Organia Carro				D		_		
Volatile Organic Com	Result (dry)	Qualifier	MDL (dry)	B RDL (dry)	Dilution	Analysis	Patch	
Analyte	mg/kg	Quaimer	mg/kg	mg/kg	Dilution	Analysis date / time	Batch	
Acetone	U		0.0169	0.0308	1	04/05/2020 07:47	WG1455717	
	U		0.00234	0.0308	1	04/05/2020 07:47	WG1455717	
Acrylonitrile	U		0.00234	0.0154	1	04/05/2020 07:47	WG1455717 WG1455717	
Benzene Bromobenzene	U		0.000493	0.00123	1	04/05/2020 07:47	WG1455717	
Bromodichloromethane	U		0.00029	0.00308	1	04/05/2020 07:47	WG1455717	
Bromoform	U		0.00737	0.0308	1	04/05/2020 07:47	WG1455717	
Bromomethane	U		0.00456	0.0308	1	04/05/2020 07:47	WG1455717	
n-Butylbenzene	U		0.00473	0.0154	1	04/05/2020 07:47	WG1455717	
sec-Butylbenzene	U		0.00312	0.0154	1	04/05/2020 07:47	WG1455717	
tert-Butylbenzene	U		0.00312	0.0054	1	04/05/2020 07:47	WG1455717	
Carbon tetrachloride	U		0.00191	0.00616	1	04/05/2020 07:47	WG1455717 WG1455717	
Chlorobenzene	U		0.00133	0.00818	1	04/05/2020 07:47	WG1455717 WG1455717	
Chlorodibromomethane	U		0.000708	0.00308	1	04/05/2020 07:47	WG1455717 WG1455717	
Chloroethane	U		0.000554	0.00308	1	04/05/2020 07:47	WG1455717 WG1455717	
Chloroform	U		0.00133	0.00616	1	04/05/2020 07:47	WG1455717 WG1455717	
Chloromethane	U		0.000511	0.00308	1	04/05/2020 07:47	WG1455717 WG1455717	
2-Chlorotoluene	U		0.001/1	0.0154	1	04/05/2020 07:47	WG1455717 WG1455717	
	U		0.00113	0.00308				
1-Chlorotoluene					1	04/05/2020 07:47	WG1455717	
,2-Dibromo-3-Chloropropane	U		0.00628	0.0308	1	04/05/2020 07:47	WG1455717	
,2-Dibromoethane	U		0.000647	0.00308	1	04/05/2020 07:47	WG1455717	
Dibromomethane	U		0.00123	0.00616	1	04/05/2020 07:47	WG1455717	
l,2-Dichlorobenzene	U		0.00179	0.00616	1	04/05/2020 07:47	WG1455717	
I,3-Dichlorobenzene	U		0.00209	0.00616	1	04/05/2020 07:47	WG1455717	
,4-Dichlorobenzene	U	14	0.00243	0.00616	1	04/05/2020 07:47	WG1455717	
Dichlorodifluoromethane	U	<u>J4</u>	0.00101	0.00308	1	04/05/2020 07:47	WG1455717	
I,1-Dichloroethane	U		0.000708	0.00308	1	04/05/2020 07:47	WG1455717	
I,2-Dichloroethane	U		0.000585	0.00308	1	04/05/2020 07:47	WG1455717	
l,1-Dichloroethene	U		0.000616	0.00308	1	04/05/2020 07:47	WG1455717	
cis-1,2-Dichloroethene	U		0.000850	0.00308	1	04/05/2020 07:47	WG1455717	
rans-1,2-Dichloroethene	U	14	0.00176	0.00616	1	04/05/2020 07:47	WG1455717	
I,2-Dichloropropane	U	<u>J4</u>	0.00156	0.00616	1	04/05/2020 07:47	WG1455717	
l,1-Dichloropropene	U		0.000863	0.00308	1	04/05/2020 07:47	WG1455717	
I,3-Dichloropropane	U		0.00216	0.00616	1	04/05/2020 07:47	WG1455717	
cis-1,3-Dichloropropene	U		0.000835	0.00308	1	04/05/2020 07:47	WG1455717	
rans-1,3-Dichloropropene	U		0.00189	0.00616	1	04/05/2020 07:47	WG1455717	
2,2-Dichloropropane	U		0.000977	0.00308	1	04/05/2020 07:47	WG1455717	
Di-isopropyl ether	U		0.000431	0.00123	1	04/05/2020 07:47	WG1455717	
Ethylbenzene	U		0.000653	0.00308	1	04/05/2020 07:47	WG1455717	
lexachloro-1,3-butadiene	U		0.0156	0.0308	1	04/05/2020 07:47	WG1455717	
sopropylbenzene	U		0.00106	0.00308	1	04/05/2020 07:47	WG1455717	
o-Isopropyltoluene	U	_	0.00287	0.00616	1	04/05/2020 07:47	WG1455717	
2-Butanone (MEK)	0.0175	<u>B J</u>	0.0154	0.0308	1	04/05/2020 07:47	WG1455717	
Methylene Chloride	U		0.00818	0.0308	1	04/05/2020 07:47	WG1455717	
-Methyl-2-pentanone (MIBK)	U		0.0123	0.0308	1	04/05/2020 07:47	WG1455717	
Methyl tert-butyl ether	U		0.000363	0.00123	1	04/05/2020 07:47	WG1455717	
laphthalene	U		0.00384	0.0154	1	04/05/2020 07:47	WG1455717	
n-Propylbenzene	U		0.00145	0.00616	1	04/05/2020 07:47	WG1455717	
Styrene	U		0.00336	0.0154	1	04/05/2020 07:47	WG1455717	
1,1,1,2-Tetrachloroethane	U		0.000616	0.00308	1	04/05/2020 07:47	WG1455717	
1,1,2,2-Tetrachloroethane	U		0.000481	0.00308	1	04/05/2020 07:47	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 38 of 88

GW-1-D24 collected date/time: 04/01/20 00:00

SAMPLE RESULTS - 18

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000832	0.00308	1	04/05/2020 07:47	WG1455717	
Tetrachloroethene	U		0.000863	0.00308	1	04/05/2020 07:47	WG1455717	
Toluene	0.00258	J	0.00154	0.00616	1	04/05/2020 07:47	WG1455717	
1,2,3-Trichlorobenzene	U		0.000770	0.0154	1	04/05/2020 07:47	WG1455717	
1,2,4-Trichlorobenzene	U		0.00594	0.0154	1	04/05/2020 07:47	WG1455717	
1,1,1-Trichloroethane	U		0.000339	0.00308	1	04/05/2020 07:47	WG1455717	
1,1,2-Trichloroethane	U		0.00109	0.00308	1	04/05/2020 07:47	WG1455717	
Trichloroethene	U		0.000493	0.00123	1	04/05/2020 07:47	WG1455717	
Trichlorofluoromethane	U		0.000616	0.00308	1	04/05/2020 07:47	WG1455717	
1,2,3-Trichloropropane	U		0.00628	0.0154	1	04/05/2020 07:47	WG1455717	
1,2,4-Trimethylbenzene	U		0.00143	0.00616	1	04/05/2020 07:47	WG1455717	
1,2,3-Trimethylbenzene	U		0.00142	0.00616	1	04/05/2020 07:47	WG1455717	
1,3,5-Trimethylbenzene	U		0.00133	0.00616	1	04/05/2020 07:47	WG1455717	
Vinyl chloride	U		0.000842	0.00308	1	04/05/2020 07:47	WG1455717	
Xylenes, Total	U		0.00589	0.00801	1	04/05/2020 07:47	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 07:47	WG1455717	
(S) 4-Bromofluorobenzene	95.4			67.0-138		04/05/2020 07:47	WG1455717	
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		04/05/2020 07:47	WG1455717	

SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 39 of 88

Collected date/time: 04/02/20 00:00

SAMPLE RESULTS - 19 L1205565

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	81.7		1	04/08/2020 21:48	WG1456966	T

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result %	Qualifier	Dilution Analy date /		Batch			
Total Solids	81.7			8/2020 21:48	WG14569	966		
/olatile Organic Com	ounds (GC/	MS) by Me	thod 8260	R				
foratile organie com	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0168	0.0306	1	04/05/2020 08:06	WG1455717	
crylonitrile	U		0.00233	0.0153	1	04/05/2020 08:06	WG1455717	
enzene	U		0.000490	0.00122	1	04/05/2020 08:06	WG1455717	
romobenzene	U		0.00128	0.0153	1	04/05/2020 08:06	WG1455717	
romodichloromethane	U		0.000964	0.00306	1	04/05/2020 08:06	WG1455717	
romoform	U		0.00732	0.0306	1	04/05/2020 08:06	WG1455717	
romomethane	U		0.00453	0.0153	1	04/05/2020 08:06	WG1455717	
-Butylbenzene	U		0.00433	0.0153	1	04/05/2020 08:06	WG1455717	
ec-Butylbenzene	U		0.00470	0.0153	1	04/05/2020 08:06	WG1455717 WG1455717	
ес-витурендене ert-Butylbenzene	U		0.00310	0.0053	1	04/05/2020 08:06	WG1455717 WG1455717	
arbon tetrachloride	U		0.00190	0.00612	1	04/05/2020 08:06	WG1455717 WG1455717	
hlorobenzene	U		0.00132	0.00612	1			
			0.000701	0.00306		04/05/2020 08:06	WG1455717 WC1455717	
hlorodibromomethane	U				1	04/05/2020 08:06	WG1455717	
hloroethane	U		0.00132	0.00612	1	04/05/2020 08:06	WG1455717 WC1455717	
hloroform	U		0.000508	0.00306	1	04/05/2020 08:06	WG1455717	
hloromethane	U		0.00170	0.0153	1	04/05/2020 08:06	WG1455717	
-Chlorotoluene	U		0.00113	0.00306	1	04/05/2020 08:06	WG1455717	
-Chlorotoluene	U		0.00138	0.00612	1	04/05/2020 08:06	WG1455717	
2-Dibromo-3-Chloropropane	U		0.00624	0.0306	1	04/05/2020 08:06	WG1455717	
2-Dibromoethane	U		0.000642	0.00306	1	04/05/2020 08:06	WG1455717	
ibromomethane	U		0.00122	0.00612	1	04/05/2020 08:06	WG1455717	
2-Dichlorobenzene	U		0.00177	0.00612	1	04/05/2020 08:06	WG1455717	
3-Dichlorobenzene	U		0.00208	0.00612	1	04/05/2020 08:06	WG1455717	
4-Dichlorobenzene	U		0.00241	0.00612	1	04/05/2020 08:06	WG1455717	
ichlorodifluoromethane	U	<u>J4</u>	0.00100	0.00306	1	04/05/2020 08:06	WG1455717	
1-Dichloroethane	U		0.000704	0.00306	1	04/05/2020 08:06	WG1455717	
2-Dichloroethane	U		0.000581	0.00306	1	04/05/2020 08:06	WG1455717	
1-Dichloroethene	U		0.000612	0.00306	1	04/05/2020 08:06	WG1455717	
is-1,2-Dichloroethene	U		0.000844	0.00306	1	04/05/2020 08:06	WG1455717	
ans-1,2-Dichloroethene	U		0.00175	0.00612	1	04/05/2020 08:06	WG1455717	
2-Dichloropropane	U	<u>J4</u>	0.00155	0.00612	1	04/05/2020 08:06	WG1455717	
1-Dichloropropene	U		0.000857	0.00306	1	04/05/2020 08:06	WG1455717	
3-Dichloropropane	U		0.00214	0.00612	1	04/05/2020 08:06	WG1455717	
s-1,3-Dichloropropene	U		0.000830	0.00306	1	04/05/2020 08:06	WG1455717	
ans-1,3-Dichloropropene	U		0.00187	0.00612	1	04/05/2020 08:06	WG1455717	
2-Dichloropropane	U		0.000970	0.00306	1	04/05/2020 08:06	WG1455717	
i-isopropyl ether	U		0.000428	0.00122	1	04/05/2020 08:06	WG1455717	
thylbenzene	0.000929	J	0.000649	0.00306	1	04/05/2020 08:06	WG1455717	
exachloro-1,3-butadiene	U		0.0155	0.0306	1	04/05/2020 08:06	WG1455717	
opropylbenzene	U		0.00106	0.00306	1	04/05/2020 08:06	WG1455717	
Isopropyltoluene	U		0.00285	0.00612	1	04/05/2020 08:06	WG1455717	
Butanone (MEK)	0.0322	В	0.0153	0.0306	1	04/05/2020 08:06	WG1455717	
ethylene Chloride	U		0.00813	0.0306	1	04/05/2020 08:06	WG1455717	
Methyl-2-pentanone (MIBK)	U		0.0122	0.0306	1	04/05/2020 08:06	WG1455717	
lethyl tert-butyl ether	U		0.000361	0.00122	1	04/05/2020 08:06	WG1455717	
aphthalene	U		0.00382	0.0153	1	04/05/2020 08:06	WG1455717	
Propylbenzene	U		0.00144	0.00612	1	04/05/2020 08:06	WG1455717	
tyrene	U		0.00334	0.0153	1	04/05/2020 08:06	WG1455717	
1,1,2-Tetrachloroethane	U		0.000612	0.00306	1	04/05/2020 08:06	WG1455717	
1,2,2-Tetrachloroethane	U		0.000477	0.00306	1	04/05/2020 08:06	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

-

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000826	0.00306	1	04/05/2020 08:06	WG1455717	
Tetrachloroethene	U		0.000857	0.00306	1	04/05/2020 08:06	WG1455717	
Toluene	0.0176		0.00153	0.00612	1	04/05/2020 08:06	WG1455717	
1,2,3-Trichlorobenzene	U		0.000765	0.0153	1	04/05/2020 08:06	WG1455717	
1,2,4-Trichlorobenzene	U		0.00590	0.0153	1	04/05/2020 08:06	WG1455717	
1,1,1-Trichloroethane	U		0.000337	0.00306	1	04/05/2020 08:06	WG1455717	
1,1,2-Trichloroethane	U		0.00108	0.00306	1	04/05/2020 08:06	WG1455717	
Trichloroethene	U		0.000490	0.00122	1	04/05/2020 08:06	WG1455717	
Trichlorofluoromethane	U		0.000612	0.00306	1	04/05/2020 08:06	WG1455717	
1,2,3-Trichloropropane	U		0.00624	0.0153	1	04/05/2020 08:06	WG1455717	
1,2,4-Trimethylbenzene	U		0.00142	0.00612	1	04/05/2020 08:06	WG1455717	
1,2,3-Trimethylbenzene	U		0.00141	0.00612	1	04/05/2020 08:06	WG1455717	
1,3,5-Trimethylbenzene	U		0.00132	0.00612	1	04/05/2020 08:06	WG1455717	
Vinyl chloride	U		0.000836	0.00306	1	04/05/2020 08:06	WG1455717	
Xylenes, Total	U		0.00585	0.00795	1	04/05/2020 08:06	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 08:06	WG1455717	
(S) 4-Bromofluorobenzene	96.7			67.0-138		04/05/2020 08:06	WG1455717	
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		04/05/2020 08:06	WG1455717	

Collect

SAMPLE RESULTS - 20

110

Ср

Тс

Ss

Cn

*Q*c

Gl

Â

Sc

GW-3-D6 Collected date/time: 04/02/	20 00:00	S	SAMPLE	E RESUL	_TS - 1	20	ONE LAB. NAT
Total Solids by Metho	od 2540 G-20	11					
	Result	Qualifier	Dilution Analy		Batch		
Analyte	%		date /	time			
Total Solids	82.5		1 04/08	8/2020 21:27	WG1456	967	
Volatile Organic Com	pounds (GC/N	NS) by Met	hod 8260	В			
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0166	0.0303	1	04/05/2020 08:25	WG1455717
Acrylonitrile	U		0.00230	0.0152	1	04/05/2020 08:25	WG1455717
Benzene	U		0.000485	0.00121	1	04/05/2020 08:25	WG1455717
Bromobenzene	U		0.00127	0.0152	1	04/05/2020 08:25	WG1455717
Bromodichloromethane	U		0.000956	0.00303	1	04/05/2020 08:25	WG1455717
Bromoform	U		0.00725	0.0303	1	04/05/2020 08:25	WG1455717
Bromomethane	U		0.00449	0.0152	1	04/05/2020 08:25	WG1455717
n-Butylbenzene	U		0.00466	0.0152	1	04/05/2020 08:25	WG1455717
sec-Butylbenzene	U		0.00307	0.0152	1	04/05/2020 08:25	WG1455717
tert-Butylbenzene	U		0.00188	0.00606	1	04/05/2020 08:25	WG1455717
Carbon tetrachloride	U		0.00131	0.00606	1	04/05/2020 08:25	WG1455717
Chlorobenzene	U		0.000695	0.00303	1	04/05/2020 08:25	WG1455717
Chlorodibromomethane	U		0.000546	0.00303	1	04/05/2020 08:25	WG1455717
Chloroethane	U		0.00131	0.00606	1	04/05/2020 08:25	WG1455717
Chloroform	U		0.000503	0.00303	1	04/05/2020 08:25	WG1455717
Chloromethane	U		0.00169	0.0152	1	04/05/2020 08:25	WG1455717
2-Chlorotoluene	U		0.00112	0.00303	1	04/05/2020 08:25	WG1455717
4-Chlorotoluene	U		0.00137	0.00606	1	04/05/2020 08:25	WG1455717
1,2-Dibromo-3-Chloropropane	U		0.00618	0.0303	1	04/05/2020 08:25	WG1455717
1,2-Dibromoethane	U		0.000637	0.00303	1	04/05/2020 08:25	WG1455717
Dibromomethane	U		0.00121	0.00606	1	04/05/2020 08:25	WG1455717
1,2-Dichlorobenzene	U		0.00176	0.00606	1	04/05/2020 08:25	WG1455717
1,3-Dichlorobenzene	U		0.00206	0.00606	1	04/05/2020 08:25	WG1455717
1,4-Dichlorobenzene	U		0.00239	0.00606	1	04/05/2020 08:25	WG1455717
Dichlorodifluoromethane	U	J4	0.000992	0.00303	1	04/05/2020 08:25	WG1455717
1,1-Dichloroethane	U	<u> </u>	0.000697	0.00303	1	04/05/2020 08:25	WG1455717
1,2-Dichloroethane	U		0.000576	0.00303	1	04/05/2020 08:25	WG1455717
1,1-Dichloroethene	U		0.000606	0.00303	1	04/05/2020 08:25	WG1455717
cis-1,2-Dichloroethene	U		0.000837	0.00303	1	04/05/2020 08:25	WG1455717
trans-1,2-Dichloroethene	U		0.00173	0.00606	1	04/05/2020 08:25	WG1455717
1,2-Dichloropropane	U	<u>J4</u>	0.00154	0.00606	1	04/05/2020 08:25	WG1455717
1,1-Dichloropropene	U	<u><u><u></u></u></u>	0.000849	0.00303	1	04/05/2020 08:25	WG1455717
1,3-Dichloropropane	U		0.000849	0.00505	1	04/05/2020 08:25	WG1455717
			0.00212		1		
cis-1,3-Dichloropropene	U		0.000822	0.00303		04/05/2020 08:25	WG1455717
trans-1,3-Dichloropropene	U				1	04/05/2020 08:25	WG1455717
2,2-Dichloropropane	U		0.000962	0.00303	1	04/05/2020 08:25	WG1455717
Di-isopropyl ether	U		0.000424	0.00121	1	04/05/2020 08:25	WG1455717
Ethylbenzene	U		0.000643	0.00303	1	04/05/2020 08:25	WG1455717
Hexachloro-1,3-butadiene	U		0.0154	0.0303	1	04/05/2020 08:25	WG1455717
Isopropylbenzene	U		0.00105	0.00303	1	04/05/2020 08:25	WG1455717
p-lsopropyltoluene	U		0.00283	0.00606	1	04/05/2020 08:25	WG1455717
2-Butanone (MEK)	0.0198	<u>B J</u>	0.0152	0.0303	1	04/05/2020 08:25	WG1455717
Methylene Chloride	U		0.00805	0.0303	1	04/05/2020 08:25	WG1455717
4-Methyl-2-pentanone (MIBK)	U		0.0121	0.0303	1	04/05/2020 08:25	WG1455717
Methyl tert-butyl ether	U		0.000358	0.00121	1	04/05/2020 08:25	WG1455717
Naphthalene	U		0.00378	0.0152	1	04/05/2020 08:25	WG1455717
n Drenulhanzana			0.00142	0.00000	1	04/05/2020 00:25	

PAGE: 42 of 88

U

U

U

U

Styrene

n-Propylbenzene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

PROJECT: 2t009

0.00143

0.00331

0.000606

0.000473

SDG: L1205565

04/05/2020 08:25

04/05/2020 08:25

04/05/2020 08:25

04/05/2020 08:25

1

1

1

1

0.00606

0.0152

0.00303

0.00303

DATE/TIME: 04/10/20 18:37

WG1455717

WG1455717

WG1455717

WG1455717

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000819	0.00303	1	04/05/2020 08:25	WG1455717	
Tetrachloroethene	U		0.000849	0.00303	1	04/05/2020 08:25	WG1455717	
Toluene	0.00192	J	0.00152	0.00606	1	04/05/2020 08:25	WG1455717	
1,2,3-Trichlorobenzene	U		0.000758	0.0152	1	04/05/2020 08:25	WG1455717	
1,2,4-Trichlorobenzene	U		0.00585	0.0152	1	04/05/2020 08:25	WG1455717	
1,1,1-Trichloroethane	U		0.000333	0.00303	1	04/05/2020 08:25	WG1455717	
1,1,2-Trichloroethane	U		0.00107	0.00303	1	04/05/2020 08:25	WG1455717	
Trichloroethene	U		0.000485	0.00121	1	04/05/2020 08:25	WG1455717	
Trichlorofluoromethane	U		0.000606	0.00303	1	04/05/2020 08:25	WG1455717	
1,2,3-Trichloropropane	U		0.00618	0.0152	1	04/05/2020 08:25	WG1455717	
1,2,4-Trimethylbenzene	U		0.00141	0.00606	1	04/05/2020 08:25	WG1455717	
1,2,3-Trimethylbenzene	U		0.00139	0.00606	1	04/05/2020 08:25	WG1455717	
1,3,5-Trimethylbenzene	U		0.00131	0.00606	1	04/05/2020 08:25	WG1455717	
Vinyl chloride	U		0.000828	0.00303	1	04/05/2020 08:25	WG1455717	
Xylenes, Total	U		0.00580	0.00788	1	04/05/2020 08:25	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 08:25	WG1455717	
(S) 4-Bromofluorobenzene	96.5			67.0-138		04/05/2020 08:25	WG1455717	
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		04/05/2020 08:25	WG1455717	

SAMPLE RESULTS - 21 L1205565

15

	2340 0-20	11				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ch
Analyte	%			date / time		2
Total Solids	87.2		1	04/08/2020 21:27	<u>WG1456967</u>	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
alyte	mg/kg		mg/kg	mg/kg		date / time		
etone	U		0.0157	0.0287	1	04/05/2020 08:45	WG1455717	
rylonitrile	U		0.00218	0.0143	1	04/05/2020 08:45	WG1455717	
nzene	U		0.000459	0.00115	1	04/05/2020 08:45	WG1455717	
omobenzene	U		0.00120	0.0143	1	04/05/2020 08:45	WG1455717	
omodichloromethane	U		0.000903	0.00287	1	04/05/2020 08:45	WG1455717	
omoform	U		0.00686	0.0287	1	04/05/2020 08:45	WG1455717	
omomethane	U		0.00424	0.0143	1	04/05/2020 08:45	WG1455717	
Butylbenzene	U		0.00440	0.0143	1	04/05/2020 08:45	WG1455717	
-Butylbenzene	U		0.00290	0.0143	1	04/05/2020 08:45	WG1455717	
rt-Butylbenzene	U		0.00178	0.00573	1	04/05/2020 08:45	WG1455717	
irbon tetrachloride	U		0.00124	0.00573	1	04/05/2020 08:45	WG1455717	
lorobenzene	U		0.000657	0.00287	1	04/05/2020 08:45	WG1455717	
lorodibromomethane	U		0.000516	0.00287	1	04/05/2020 08:45	WG1455717	
loroethane	U		0.00124	0.00573	1	04/05/2020 08:45	WG1455717	
loroform	U		0.000476	0.00287	1	04/05/2020 08:45	WG1455717	
loromethane	U		0.00159	0.0143	1	04/05/2020 08:45	WG1455717	
hlorotoluene	U		0.00105	0.00287	1	04/05/2020 08:45	WG1455717	
nlorotoluene	U		0.00130	0.00573	1	04/05/2020 08:45	WG1455717	
Dibromo-3-Chloropropane	U		0.00585	0.0287	1	04/05/2020 08:45	WG1455717	
Dibromoethane	U		0.000602	0.00287	1	04/05/2020 08:45	WG1455717	
romomethane	U		0.00115	0.00573	1	04/05/2020 08:45	WG1455717	
Dichlorobenzene	U		0.00166	0.00573	1	04/05/2020 08:45	WG1455717	
Dichlorobenzene	U		0.00195	0.00573	1	04/05/2020 08:45	WG1455717	
Dichlorobenzene	U		0.00226	0.00573	1	04/05/2020 08:45	WG1455717	
lorodifluoromethane	U	<u>J4</u>	0.000938	0.00287	1	04/05/2020 08:45	WG1455717	
Dichloroethane	U	_	0.000659	0.00287	1	04/05/2020 08:45	WG1455717	
Dichloroethane	U		0.000545	0.00287	1	04/05/2020 08:45	WG1455717	
lichloroethene	U		0.000573	0.00287	1	04/05/2020 08:45	WG1455717	
1,2-Dichloroethene	U		0.000791	0.00287	1	04/05/2020 08:45	WG1455717	
ns-1,2-Dichloroethene	U		0.00164	0.00573	1	04/05/2020 08:45	WG1455717	
Dichloropropane	U	<u>J4</u>	0.00146	0.00573	1	04/05/2020 08:45	WG1455717	
Dichloropropene	U		0.000802	0.00287	1	04/05/2020 08:45	WG1455717	
vichloropropane	U		0.00201	0.00573	1	04/05/2020 08:45	WG1455717	
I,3-Dichloropropene	U		0.000777	0.00287	1	04/05/2020 08:45	WG1455717	
s-1,3-Dichloropropene	U		0.00175	0.00573	1	04/05/2020 08:45	WG1455717	
Dichloropropane	U		0.000909	0.00287	1	04/05/2020 08:45	WG1455717	
sopropyl ether	U		0.000401	0.00115	1	04/05/2020 08:45	WG1455717	
benzene	U		0.000608	0.00287	1	04/05/2020 08:45	WG1455717	
achloro-1,3-butadiene	U		0.0146	0.0287	1	04/05/2020 08:45	WG1455717	
ropylbenzene	U		0.000989	0.00287	1	04/05/2020 08:45	WG1455717	
propyltoluene	U		0.00267	0.00573	1	04/05/2020 08:45	WG1455717	
utanone (MEK)	0.0368	B	0.0143	0.00373	1	04/05/2020 08:45	WG1455717	
ylene Chloride	U	2	0.00761	0.0287	1	04/05/2020 08:45	WG1455717	
ethyl-2-pentanone (MIBK)	U		0.0115	0.0287	1	04/05/2020 08:45	WG1455717	
hyl tert-butyl ether	U		0.000338	0.0287	1	04/05/2020 08:45	WG1455717	
bhthalene	U		0.000358	0.00113	1	04/05/2020 08:45	WG1455717	
ropylbenzene	U		0.00358	0.0143	1	04/05/2020 08:45	WG1455717 WG1455717	
	U		0.00135	0.00573	1	04/05/2020 08:45	WG1455717 WG1455717	
rene 1,2-Tetrachloroethane	U		0.000313		1			
2,2-Tetrachloroethane	U		0.000573	0.00287	1	04/05/2020 08:45 04/05/2020 08:45	WG1455717 WG1455717	

PROJECT: 2t009

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000774	0.00287	1	04/05/2020 08:45	WG1455717	
Tetrachloroethene	U		0.000802	0.00287	1	04/05/2020 08:45	WG1455717	
Toluene	U		0.00143	0.00573	1	04/05/2020 08:45	WG1455717	
1,2,3-Trichlorobenzene	U		0.000717	0.0143	1	04/05/2020 08:45	WG1455717	
1,2,4-Trichlorobenzene	U		0.00553	0.0143	1	04/05/2020 08:45	WG1455717	
1,1,1-Trichloroethane	U		0.000315	0.00287	1	04/05/2020 08:45	WG1455717	
1,1,2-Trichloroethane	U		0.00101	0.00287	1	04/05/2020 08:45	WG1455717	
Trichloroethene	U		0.000459	0.00115	1	04/05/2020 08:45	WG1455717	
Trichlorofluoromethane	U		0.000573	0.00287	1	04/05/2020 08:45	WG1455717	
1,2,3-Trichloropropane	U		0.00585	0.0143	1	04/05/2020 08:45	WG1455717	
1,2,4-Trimethylbenzene	U		0.00133	0.00573	1	04/05/2020 08:45	WG1455717	
1,2,3-Trimethylbenzene	U		0.00132	0.00573	1	04/05/2020 08:45	WG1455717	
1,3,5-Trimethylbenzene	U		0.00124	0.00573	1	04/05/2020 08:45	WG1455717	
Vinyl chloride	U		0.000783	0.00287	1	04/05/2020 08:45	WG1455717	
Xylenes, Total	U		0.00548	0.00745	1	04/05/2020 08:45	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 08:45	WG1455717	
(S) 4-Bromofluorobenzene	97.6			67.0-138		04/05/2020 08:45	WG1455717	
(S) 1,2-Dichloroethane-d4	97.1			70.0-130		04/05/2020 08:45	WG1455717	

SAMPLE RESULTS - 22 L1205565

P

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		2
Analyte	%			date / time		2	_
Total Solids	84.1		1	04/08/2020 21:27	WG1456967		Γ

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result %	Qualifier	Dilution Analy date		Batch			
Total Solids	84.1			8/2020 21:27	WG1456	967		
/olatile Organic Comp	ounds (GC/	MS) by Me	ethod 8260	В				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0163	0.0297	1	04/05/2020 09:04	WG1455717	
Acrylonitrile	U		0.00226	0.0149	1	04/05/2020 09:04	WG1455717	
Benzene	U		0.000476	0.00119	1	04/05/2020 09:04	WG1455717	
Bromobenzene	U		0.00125	0.0149	1	04/05/2020 09:04	WG1455717	
Bromodichloromethane	U		0.000937	0.00297	1	04/05/2020 09:04	WG1455717	
Bromoform	U		0.00711	0.0297	1	04/05/2020 09:04	WG1455717	
Bromomethane	U		0.00440	0.0149	1	04/05/2020 09:04	WG1455717	
n-Butylbenzene	U		0.00457	0.0149	1	04/05/2020 09:04	WG1455717	
sec-Butylbenzene	U		0.00301	0.0149	1	04/05/2020 09:04	WG1455717	
tert-Butylbenzene	U		0.00184	0.00595	1	04/05/2020 09:04	WG1455717	
Carbon tetrachloride	U		0.00128	0.00595	1	04/05/2020 09:04	WG1455717	
Chlorobenzene	U		0.000682	0.00297	1	04/05/2020 09:04	WG1455717	
Chlorodibromomethane	U		0.000535	0.00297	1	04/05/2020 09:04	WG1455717	
Chloroethane	U		0.00128	0.00595	1	04/05/2020 09:04	WG1455717	
Chloroform	U		0.000494	0.00297	1	04/05/2020 09:04	WG1455717	
Chloromethane	U		0.00165	0.0149	1	04/05/2020 09:04	WG1455717	
2-Chlorotoluene	U		0.00109	0.00297	1	04/05/2020 09:04	WG1455717	
1-Chlorotoluene	U		0.00134	0.00595	1	04/05/2020 09:04	WG1455717	
l,2-Dibromo-3-Chloropropane	U		0.00607	0.0297	1	04/05/2020 09:04	WG1455717	
,2-Dibromoethane	U		0.000625	0.00297	1	04/05/2020 09:04	WG1455717	
Dibromomethane	U		0.00119	0.00595	1	04/05/2020 09:04	WG1455717	
I,2-Dichlorobenzene	U		0.00173	0.00595	1	04/05/2020 09:04	WG1455717	
,3-Dichlorobenzene	U		0.00202	0.00595	1	04/05/2020 09:04	WG1455717	
,4-Dichlorobenzene	U		0.00234	0.00595	1	04/05/2020 09:04	WG1455717	
Dichlorodifluoromethane	U	<u>J4</u>	0.000973	0.00297	1	04/05/2020 09:04	WG1455717	
I,1-Dichloroethane	U	_	0.000684	0.00297	1	04/05/2020 09:04	WG1455717	
1,2-Dichloroethane	U		0.000565	0.00297	1	04/05/2020 09:04	WG1455717	
1,1-Dichloroethene	U		0.000595	0.00297	1	04/05/2020 09:04	WG1455717	
cis-1,2-Dichloroethene	U		0.000821	0.00297	1	04/05/2020 09:04	WG1455717	
trans-1,2-Dichloroethene	U		0.00170	0.00595	1	04/05/2020 09:04	WG1455717	
1,2-Dichloropropane	U	<u>J4</u>	0.00151	0.00595	1	04/05/2020 09:04	WG1455717	
I,1-Dichloropropene	U	_	0.000833	0.00297	1	04/05/2020 09:04	WG1455717	
1,3-Dichloropropane	U		0.00208	0.00595	1	04/05/2020 09:04	WG1455717	
cis-1,3-Dichloropropene	U		0.000807	0.00297	1	04/05/2020 09:04	WG1455717	
rans-1,3-Dichloropropene	U		0.00182	0.00595	1	04/05/2020 09:04	WG1455717	
2,2-Dichloropropane	U		0.000943	0.00297	1	04/05/2020 09:04	WG1455717	
Di-isopropyl ether	U		0.000416	0.00119	1	04/05/2020 09:04	WG1455717	
Ethylbenzene	U		0.000631	0.00297	1	04/05/2020 09:04	WG1455717	
Hexachloro-1,3-butadiene	U		0.0151	0.0297	1	04/05/2020 09:04	WG1455717	
sopropylbenzene	U		0.00103	0.00297	1	04/05/2020 09:04	WG1455717	
p-lsopropyltoluene	U		0.00277	0.00595	1	04/05/2020 09:04	WG1455717	
2-Butanone (MEK)	0.0429	B	0.0149	0.0297	1	04/05/2020 09:04	WG1455717	
Methylene Chloride	U	-	0.00790	0.0297	1	04/05/2020 09:04	WG1455717	
1-Methyl-2-pentanone (MIBK)	U		0.0119	0.0297	1	04/05/2020 09:04	WG1455717	
Methyl tert-butyl ether	U		0.000351	0.00119	1	04/05/2020 09:04	WG1455717	
Naphthalene	U		0.00371	0.0149	1	04/05/2020 09:04	WG1455717	
n-Propylbenzene	U		0.00140	0.00595	1	04/05/2020 09:04	WG1455717	
Styrene	U		0.00325	0.0149	1	04/05/2020 09:04	WG1455717	
1,1,1,2-Tetrachloroethane	U		0.000595	0.00297	1	04/05/2020 09:04	WG1455717	
1,1,2,2-Tetrachloroethane	U		0.000393	0.00297	1	04/05/2020 09:04	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000803	0.00297	1	04/05/2020 09:04	WG1455717	
Tetrachloroethene	0.00698		0.000833	0.00297	1	04/05/2020 09:04	WG1455717	
Toluene	U		0.00149	0.00595	1	04/05/2020 09:04	WG1455717	
1,2,3-Trichlorobenzene	U		0.000744	0.0149	1	04/05/2020 09:04	WG1455717	
1,2,4-Trichlorobenzene	U		0.00573	0.0149	1	04/05/2020 09:04	WG1455717	
I,1,1-Trichloroethane	U		0.000327	0.00297	1	04/05/2020 09:04	WG1455717	
1,1,2-Trichloroethane	U		0.00105	0.00297	1	04/05/2020 09:04	WG1455717	
Trichloroethene	U		0.000476	0.00119	1	04/05/2020 09:04	WG1455717	
Trichlorofluoromethane	U		0.000595	0.00297	1	04/05/2020 09:04	WG1455717	
1,2,3-Trichloropropane	U		0.00607	0.0149	1	04/05/2020 09:04	WG1455717	
1,2,4-Trimethylbenzene	U		0.00138	0.00595	1	04/05/2020 09:04	WG1455717	
1,2,3-Trimethylbenzene	U		0.00137	0.00595	1	04/05/2020 09:04	WG1455717	
1,3,5-Trimethylbenzene	U		0.00128	0.00595	1	04/05/2020 09:04	WG1455717	
Vinyl chloride	U		0.000813	0.00297	1	04/05/2020 09:04	WG1455717	
Xylenes, Total	U		0.00569	0.00773	1	04/05/2020 09:04	WG1455717	
(S) Toluene-d8	104			75.0-131		04/05/2020 09:04	WG1455717	
(S) 4-Bromofluorobenzene	95.9			67.0-138		04/05/2020 09:04	WG1455717	
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		04/05/2020 09:04	WG1455717	

SDG: L1205565 DATE/TIME: 04/10/20 18:37

Coll

SAMPLE RESULTS - 23

ONE LAB. NATIONWIDE.

E.

Ср

Тс

Ss

Cn

Qc

Gl

Â

Sc

Collected date/time: 04/02/	20 00:00		SAMPLE	L1205565	_15	23	ONE LAE
Total Solids by Metho	Result		Dilution Analy	-i	Datah		
Analyte	%	Qualifier	Dilution Analy date /		Batch		
Total Solids	79.6			8/2020 21:27	WG1456	967	
				_			
Volatile Organic Com					D:1 -1:		
Analyta	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry)	Dilution	Analysis date / time	Batch
Analyte	U			mg/kg	1		WC14EE717
Acetone	U		0.0172	0.0314	1	04/05/2020 09:23	WG1455717
Acrylonitrile	U		0.00239	0.0157	1	04/05/2020 09:23	WG1455717
Benzene Bromobenzene	U		0.000503	0.00126	1	04/05/2020 09:23 04/05/2020 09:23	WG1455717
Bromodichloromethane	U		0.00032	0.00314	1	04/05/2020 09:23	WG1455717
	U		0.000990		1	04/05/2020 09:23	WG1455717
Bromoform				0.0314			WG1455717
Bromomethane	U		0.00465	0.0157	1	04/05/2020 09:23	WG1455717
n-Butylbenzene			0.00483	0.0157		04/05/2020 09:23	WG1455717
sec-Butylbenzene	U		0.00318	0.0157	1	04/05/2020 09:23	WG1455717
tert-Butylbenzene	U		0.00195	0.00628	1	04/05/2020 09:23	WG1455717
Carbon tetrachloride	U		0.00136	0.00628	1	04/05/2020 09:23	WG1455717
Chlorobenzene	U		0.000720	0.00314	1	04/05/2020 09:23	WG1455717
Chlorodibromomethane	U		0.000566	0.00314	1	04/05/2020 09:23	WG1455717
Chloroethane	U		0.00136	0.00628	1	04/05/2020 09:23	WG1455717
Chloroform	U		0.000522	0.00314	1	04/05/2020 09:23	WG1455717
Chloromethane	U		0.00175	0.0157	1	04/05/2020 09:23	WG1455717
2-Chlorotoluene	U		0.00116	0.00314	1	04/05/2020 09:23	WG1455717
4-Chlorotoluene	U		0.00142	0.00628	1	04/05/2020 09:23	WG1455717
1,2-Dibromo-3-Chloropropane	U		0.00641	0.0314	1	04/05/2020 09:23	WG1455717
1,2-Dibromoethane	U		0.000660	0.00314	1	04/05/2020 09:23	WG1455717
Dibromomethane	U		0.00126	0.00628	1	04/05/2020 09:23	WG1455717
1,2-Dichlorobenzene	U		0.00182	0.00628	1	04/05/2020 09:23	WG1455717
1,3-Dichlorobenzene	U		0.00214	0.00628	1	04/05/2020 09:23	WG1455717
1,4-Dichlorobenzene	U		0.00248	0.00628	1	04/05/2020 09:23	WG1455717
Dichlorodifluoromethane	U	<u>J4</u>	0.00103	0.00314	1	04/05/2020 09:23	WG1455717
1,1-Dichloroethane	U		0.000723	0.00314	1	04/05/2020 09:23	WG1455717
1,2-Dichloroethane	U		0.000597	0.00314	1	04/05/2020 09:23	WG1455717
1,1-Dichloroethene	U		0.000628	0.00314	1	04/05/2020 09:23	WG1455717
cis-1,2-Dichloroethene	U		0.000867	0.00314	1	04/05/2020 09:23	WG1455717
trans-1,2-Dichloroethene	U		0.00180	0.00628	1	04/05/2020 09:23	WG1455717
1,2-Dichloropropane	U	<u>J4</u>	0.00160	0.00628	1	04/05/2020 09:23	WG1455717
1,1-Dichloropropene	U		0.000880	0.00314	1	04/05/2020 09:23	WG1455717
1,3-Dichloropropane	U		0.00220	0.00628	1	04/05/2020 09:23	WG1455717
cis-1,3-Dichloropropene	U		0.000852	0.00314	1	04/05/2020 09:23	WG1455717
trans-1,3-Dichloropropene	U		0.00192	0.00628	1	04/05/2020 09:23	WG1455717
2,2-Dichloropropane	U		0.000997	0.00314	1	04/05/2020 09:23	WG1455717
Di-isopropyl ether	U		0.000440	0.00126	1	04/05/2020 09:23	WG1455717
Ethylbenzene	U		0.000666	0.00314	1	04/05/2020 09:23	WG1455717
Hexachloro-1,3-butadiene	U		0.0160	0.0314	1	04/05/2020 09:23	WG1455717
Isopropylbenzene	U		0.00108	0.00314	1	04/05/2020 09:23	WG1455717
p-Isopropyltoluene	U		0.00293	0.00628	1	04/05/2020 09:23	WG1455717
2-Butanone (MEK)	0.0584	B	0.0157	0.0314	1	04/05/2020 09:23	WG1455717
Methylene Chloride	U		0.00835	0.0314	1	04/05/2020 09:23	WG1455717
4-Methyl-2-pentanone (MIBK)	U		0.0126	0.0314	1	04/05/2020 09:23	WG1455717
Methyl tert-butyl ether	U		0.000371	0.00126	1	04/05/2020 09:23	WG1455717
Naphthalene	U		0.00392	0.0157	1	04/05/2020 09:23	WG1455717
n-Propylbenzene	U		0.00148	0.00628	1	04/05/2020 09:23	WG1455717
Styrene	U		0.00343	0.0157	1	04/05/2020 09:23	WG1455717
1112 Totrachloroothano	11		0.000620	0.00214	1	04/05/2020 00:22	WC14EE717

ACCOUNT: Weber, Hayes & Associates - CA

U

U

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

PROJECT: 2t009

0.00314

0.00314

0.000628

0.000490

SDG: L1205565

1

1

04/05/2020 09:23

04/05/2020 09:23

WG1455717

WG1455717

PAGE: 48 of 88

SAMPLE RESULTS - 23 L1205565

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000848	0.00314	1	04/05/2020 09:23	WG1455717	
Tetrachloroethene	0.0196		0.000880	0.00314	1	04/05/2020 09:23	WG1455717	
Toluene	U		0.00157	0.00628	1	04/05/2020 09:23	WG1455717	
1,2,3-Trichlorobenzene	U		0.000786	0.0157	1	04/05/2020 09:23	WG1455717	
1,2,4-Trichlorobenzene	U		0.00606	0.0157	1	04/05/2020 09:23	WG1455717	
1,1,1-Trichloroethane	U		0.000346	0.00314	1	04/05/2020 09:23	WG1455717	
1,1,2-Trichloroethane	U		0.00111	0.00314	1	04/05/2020 09:23	WG1455717	
Trichloroethene	U		0.000503	0.00126	1	04/05/2020 09:23	WG1455717	
Trichlorofluoromethane	U		0.000628	0.00314	1	04/05/2020 09:23	WG1455717	
1,2,3-Trichloropropane	U		0.00641	0.0157	1	04/05/2020 09:23	WG1455717	
1,2,4-Trimethylbenzene	U		0.00146	0.00628	1	04/05/2020 09:23	WG1455717	
1,2,3-Trimethylbenzene	U		0.00145	0.00628	1	04/05/2020 09:23	WG1455717	
1,3,5-Trimethylbenzene	U		0.00136	0.00628	1	04/05/2020 09:23	WG1455717	
Vinyl chloride	U		0.000859	0.00314	1	04/05/2020 09:23	WG1455717	
Xylenes, Total	U		0.00601	0.00817	1	04/05/2020 09:23	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 09:23	WG1455717	
(S) 4-Bromofluorobenzene	93.5			67.0-138		04/05/2020 09:23	WG1455717	
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		04/05/2020 09:23	WG1455717	

SDG: L1205565

DATE/TIME: 04/10/20 18:37 PAGE:

Collec

110

Ср

Тс

Ss

Cn

Qc

Gl

Â

Sc

GW-4-D6 Collected date/time: 04/02/	20 00:00		SAMPLE	E RESUL	_TS - 1	24	ONE LAB. NA
Total Solids by Metho	od 2540 G-20	D11					
	Result	Qualifier	Dilution Analy	sis	Batch		
Analyte	%		date /	time			
Total Solids	68.1		1 04/08	8/2020 21:27	WG1456	967	
				D			
Volatile Organic Com	ipounds (GC/	INS) by Me	thod 8260	В			
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0201	0.0367	1	04/05/2020 09:42	WG1455717
Acrylonitrile	U		0.00279	0.0184	1	04/05/2020 09:42	WG1455717
Benzene	U		0.000588	0.00147	1	04/05/2020 09:42	WG1455717
Bromobenzene	U		0.00154	0.0184	1	04/05/2020 09:42	WG1455717
Bromodichloromethane	U		0.00116	0.00367	1	04/05/2020 09:42	WG1455717
Bromoform	U		0.00878	0.0367	1	04/05/2020 09:42	WG1455717
Bromomethane	U		0.00543	0.0184	1	04/05/2020 09:42	WG1455717
n-Butylbenzene	U		0.00564	0.0184	1	04/05/2020 09:42	WG1455717
sec-Butylbenzene	U		0.00372	0.0184	1	04/05/2020 09:42	WG1455717
tert-Butylbenzene	U		0.00228	0.00734	1	04/05/2020 09:42	WG1455717
Carbon tetrachloride	U		0.00159	0.00734	1	04/05/2020 09:42	WG1455717
Chlorobenzene	U		0.000842	0.00367	1	04/05/2020 09:42	WG1455717
Chlorodibromomethane	U		0.000661	0.00367	1	04/05/2020 09:42	WG1455717
Chloroethane	U		0.00159	0.00734	1	04/05/2020 09:42	WG1455717
Chloroform	U		0.000610	0.00367	1	04/05/2020 09:42	WG1455717
Chloromethane	U		0.00204	0.0184	1	04/05/2020 09:42	WG1455717
2-Chlorotoluene	U		0.00135	0.00367	1	04/05/2020 09:42	WG1455717
4-Chlorotoluene	U		0.00166	0.00734	1	04/05/2020 09:42	WG1455717
1,2-Dibromo-3-Chloropropane	U		0.00749	0.0367	1	04/05/2020 09:42	WG1455717
1,2-Dibromoethane	U		0.000771	0.00367	1	04/05/2020 09:42	WG1455717
Dibromomethane	U		0.00147	0.00734	1	04/05/2020 09:42	WG1455717
1,2-Dichlorobenzene	U		0.00213	0.00734	1	04/05/2020 09:42	WG1455717
1,3-Dichlorobenzene	U		0.00250	0.00734	1	04/05/2020 09:42	WG1455717
1,4-Dichlorobenzene	U		0.00289	0.00734	1	04/05/2020 09:42	WG1455717
Dichlorodifluoromethane	U	<u>J4</u>	0.00120	0.00367	1	04/05/2020 09:42	WG1455717
1,1-Dichloroethane	U		0.000845	0.00367	1	04/05/2020 09:42	WG1455717
1,2-Dichloroethane	U		0.000698	0.00367	1	04/05/2020 09:42	WG1455717
1,1-Dichloroethene	U		0.000734	0.00367	1	04/05/2020 09:42	WG1455717
cis-1,2-Dichloroethene	U		0.00101	0.00367	1	04/05/2020 09:42	WG1455717
trans-1,2-Dichloroethene	U		0.00210	0.00734	1	04/05/2020 09:42	WG1455717
1,2-Dichloropropane	U	J4	0.00187	0.00734	1	04/05/2020 09:42	WG1455717
1,1-Dichloropropene	U		0.00103	0.00367	1	04/05/2020 09:42	WG1455717
1,3-Dichloropropane	U		0.00257	0.00734	1	04/05/2020 09:42	WG1455717
cis-1,3-Dichloropropene	U		0.000996	0.00367	1	04/05/2020 09:42	WG1455717
trans-1,3-Dichloropropene	U		0.00225	0.00734	1	04/05/2020 09:42	WG1455717
2,2-Dichloropropane	U		0.00116	0.00367	1	04/05/2020 09:42	WG1455717
Di-isopropyl ether	U		0.000514	0.00147	1	04/05/2020 09:42	WG1455717
Ethylbenzene	U		0.000779	0.00367	1	04/05/2020 09:42	WG1455717
Hexachloro-1,3-butadiene	U		0.0187	0.0367	1	04/05/2020 09:42	WG1455717
Isopropylbenzene	U		0.00127	0.00367	1	04/05/2020 09:42	WG1455717
p-lsopropyltoluene	U		0.00342	0.00734	1	04/05/2020 09:42	WG1455717
2-Butanone (MEK)	0.0527	В	0.0184	0.0367	1	04/05/2020 09:42	WG1455717
Methylene Chloride	U		0.00975	0.0367	1	04/05/2020 09:42	WG1455717
4-Methyl-2-pentanone (MIBK)	U		0.0147	0.0367	1	04/05/2020 09:42	WG1455717
Methyl tert-butyl ether	U		0.000433	0.00147	1	04/05/2020 09:42	WG1455717
Naphthalene	U		0.00458	0.0184	1	04/05/2020 09:42	WG1455717
a Data a dhaana a a			0.00172	0.00724	1	04/05/2020 00:42	

ACCOUNT: Weber, Hayes & Associates - CA

U

U

U

U

n-Propylbenzene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Styrene

PROJECT: 2t009

0.00734

0.0184

0.00367

0.00367

0.00173

0.00401

0.000734

0.000573

SDG: L1205565

1

1

1

1

04/05/2020 09:42

04/05/2020 09:42

04/05/2020 09:42

04/05/2020 09:42

DATE/TIME: 04/10/20 18:37

WG1455717

WG1455717

WG1455717

WG1455717

PAGE: 50 of 88

-

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000992	0.00367	1	04/05/2020 09:42	WG1455717	
Tetrachloroethene	0.00922		0.00103	0.00367	1	04/05/2020 09:42	WG1455717	
Toluene	U		0.00184	0.00734	1	04/05/2020 09:42	WG1455717	
1,2,3-Trichlorobenzene	U		0.000918	0.0184	1	04/05/2020 09:42	WG1455717	
1,2,4-Trichlorobenzene	U		0.00708	0.0184	1	04/05/2020 09:42	WG1455717	
1,1,1-Trichloroethane	U		0.000404	0.00367	1	04/05/2020 09:42	WG1455717	
1,1,2-Trichloroethane	U		0.00130	0.00367	1	04/05/2020 09:42	WG1455717	
Trichloroethene	U		0.000588	0.00147	1	04/05/2020 09:42	WG1455717	
Trichlorofluoromethane	U		0.000734	0.00367	1	04/05/2020 09:42	WG1455717	
1,2,3-Trichloropropane	U		0.00749	0.0184	1	04/05/2020 09:42	WG1455717	
1,2,4-Trimethylbenzene	U		0.00170	0.00734	1	04/05/2020 09:42	WG1455717	
1,2,3-Trimethylbenzene	U		0.00169	0.00734	1	04/05/2020 09:42	WG1455717	
1,3,5-Trimethylbenzene	U		0.00159	0.00734	1	04/05/2020 09:42	WG1455717	
Vinyl chloride	U		0.00100	0.00367	1	04/05/2020 09:42	WG1455717	
Xylenes, Total	U		0.00702	0.00955	1	04/05/2020 09:42	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 09:42	WG1455717	
(S) 4-Bromofluorobenzene	96.3			67.0-138		04/05/2020 09:42	WG1455717	
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		04/05/2020 09:42	WG1455717	

SDG: L1205565 DATE/TIME: 04/10/20 18:37

Hexachloro-1,3-butadiene

Isopropylbenzene p-Isopropyltoluene

2-Butanone (MEK)

Methylene Chloride

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Naphthalene

Styrene

n-Propylbenzene

4-Methyl-2-pentanone (MIBK)

U

U

U

U

U

U

U

U

U

U

U

ACCOUNT:

Weber, Hayes & Associates - CA

0.0255

Col

Ср

Тс

Ss

Cn

Qc

Gl

Â

Sc

GW-4-D12 Collected date/time: 04/02/2	20 00:00	(SAMPLE	RESUL	_TS - 2	25	ONE LAB.
Total Solids by Metho	d 2540 G-20)11					
	Result	Qualifier	Dilution Analys	sis	Batch		
Analyte	%		date /	time			
Total Solids	93.4		1 04/08	/2020 21:27	WG1456	967	
Volatile Organic Com	pounds (GC/I	MS) by Me	thod 8260	В			
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	0.0206	J	0.0147	0.0268	1	04/05/2020 10:01	WG1455717
Acrylonitrile	U		0.00203	0.0134	1	04/05/2020 10:01	WG1455717
Benzene	U		0.000428	0.00107	1	04/05/2020 10:01	WG1455717
Bromobenzene	U		0.00112	0.0134	1	04/05/2020 10:01	WG1455717
Bromodichloromethane	U		0.000844	0.00268	1	04/05/2020 10:01	WG1455717
Bromoform	U		0.00640	0.0268	1	04/05/2020 10:01	WG1455717
Bromomethane	U		0.00396	0.0134	1	04/05/2020 10:01	WG1455717
n-Butylbenzene	U		0.00411	0.0134	1	04/05/2020 10:01	WG1455717
sec-Butylbenzene	U		0.00271	0.0134	1	04/05/2020 10:01	WG1455717
tert-Butylbenzene	U		0.00166	0.00535	1	04/05/2020 10:01	WG1455717
Carbon tetrachloride	U		0.00116	0.00535	1	04/05/2020 10:01	WG1455717
Chlorobenzene	U		0.000614	0.00268	1	04/05/2020 10:01	WG1455717
Chlorodibromomethane	U		0.000482	0.00268	1	04/05/2020 10:01	WG1455717
Chloroethane	U		0.00116	0.00535	1	04/05/2020 10:01	WG1455717
Chloroform	U		0.000444	0.00268	1	04/05/2020 10:01	WG1455717
Chloromethane	U		0.00149	0.0134	1	04/05/2020 10:01	WG1455717
2-Chlorotoluene	U		0.000985	0.00268	1	04/05/2020 10:01	WG1455717
4-Chlorotoluene	U		0.00121	0.00535	1	04/05/2020 10:01	WG1455717
1,2-Dibromo-3-Chloropropane	U		0.00546	0.0268	1	04/05/2020 10:01	WG1455717
1,2-Dibromoethane	U		0.000562	0.00268	1	04/05/2020 10:01	WG1455717
Dibromomethane	U		0.00107	0.00535	1	04/05/2020 10:01	WG1455717
1,2-Dichlorobenzene	U		0.00155	0.00535	1	04/05/2020 10:01	WG1455717
1,3-Dichlorobenzene	U		0.00182	0.00535	1	04/05/2020 10:01	WG1455717
1,4-Dichlorobenzene	U		0.00211	0.00535	1	04/05/2020 10:01	WG1455717
Dichlorodifluoromethane	U	<u>J4</u>	0.000876	0.00268	1	04/05/2020 10:01	WG1455717
1,1-Dichloroethane	U	_	0.000616	0.00268	1	04/05/2020 10:01	WG1455717
1,2-Dichloroethane	U		0.000509	0.00268	1	04/05/2020 10:01	WG1455717
1,1-Dichloroethene	U		0.000535	0.00268	1	04/05/2020 10:01	WG1455717
cis-1,2-Dichloroethene	U		0.000739	0.00268	1	04/05/2020 10:01	WG1455717
trans-1,2-Dichloroethene	U		0.00153	0.00535	1	04/05/2020 10:01	WG1455717
1,2-Dichloropropane	U	<u>J4</u>	0.00136	0.00535	1	04/05/2020 10:01	WG1455717
1,1-Dichloropropene	U		0.000750	0.00268	1	04/05/2020 10:01	WG1455717
1,3-Dichloropropane	U		0.00187	0.00535	1	04/05/2020 10:01	WG1455717
cis-1,3-Dichloropropene	U		0.000726	0.00268	1	04/05/2020 10:01	WG1455717
trans-1,3-Dichloropropene	U		0.00164	0.00535	1	04/05/2020 10:01	WG1455717
2,2-Dichloropropane	U		0.000849	0.00268	1	04/05/2020 10:01	WG1455717
Di-isopropyl ether	U		0.000375	0.00107	1	04/05/2020 10:01	WG1455717
Ethylbenzene	U		0.000568	0.00268	1	04/05/2020 10:01	WG1455717
Have also a 12 houts diama							

0.0136

0.000924

0.00250

0.0134

0.00711

0.0107

0.000316

0.00334

0.00126

0.00292

0.000535

0.000418

PROJECT:

2t009

ВJ

1

1

1

1

1

1

1

1

1

1

1

1

SDG:

L1205565

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

04/05/2020 10:01

0.0268

0.00268

0.00535

0.0268

0.0268

0.0268

0.00107

0.0134

0.0134

0.00535

0.00268

0.00268

WG1455717

DATE/TIME:

04/10/20 18:37

PAGE: 52 of 88

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		l
1,1,2-Trichlorotrifluoroethane	U		0.000723	0.00268	1	04/05/2020 10:01	WG1455717	
Tetrachloroethene	0.0259		0.000750	0.00268	1	04/05/2020 10:01	WG1455717	
Toluene	0.00908		0.00134	0.00535	1	04/05/2020 10:01	WG1455717	Γ
1,2,3-Trichlorobenzene	U		0.000669	0.0134	1	04/05/2020 10:01	WG1455717	
1,2,4-Trichlorobenzene	U		0.00516	0.0134	1	04/05/2020 10:01	WG1455717	L
1,1,1-Trichloroethane	U		0.000295	0.00268	1	04/05/2020 10:01	WG1455717	
1,1,2-Trichloroethane	U		0.000946	0.00268	1	04/05/2020 10:01	WG1455717	
Trichloroethene	U		0.000428	0.00107	1	04/05/2020 10:01	WG1455717	
Trichlorofluoromethane	U		0.000535	0.00268	1	04/05/2020 10:01	WG1455717	
1,2,3-Trichloropropane	U		0.00546	0.0134	1	04/05/2020 10:01	WG1455717	
1,2,4-Trimethylbenzene	U		0.00124	0.00535	1	04/05/2020 10:01	WG1455717	
1,2,3-Trimethylbenzene	U		0.00123	0.00535	1	04/05/2020 10:01	WG1455717	
1,3,5-Trimethylbenzene	U		0.00116	0.00535	1	04/05/2020 10:01	WG1455717	Γ
Vinyl chloride	U		0.000731	0.00268	1	04/05/2020 10:01	WG1455717	
Xylenes, Total	U		0.00512	0.00696	1	04/05/2020 10:01	WG1455717	L
(S) Toluene-d8	105			75.0-131		04/05/2020 10:01	WG1455717	
(S) 4-Bromofluorobenzene	96.6			67.0-138		04/05/2020 10:01	WG1455717	
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		04/05/2020 10:01	WG1455717	[

Di-isopropyl ether

Isopropylbenzene

p-Isopropyltoluene

2-Butanone (MEK)

Methylene Chloride

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Naphthalene

Styrene

n-Propylbenzene

4-Methyl-2-pentanone (MIBK)

Hexachloro-1,3-butadiene

Ethylbenzene

Τс

Ss

Cn

*Q*c

Gl

AI

Sc

GW-4-D23 Collected date/time: 04/02/2	20 00:00			E RESUL		_ *	
Total Solids by Metho	d 2540 G-20′	11					
	Result	Qualifier	Dilution Analy	sis	Batch		
Analyte	%		date /	time			
Total Solids	94.1		1 04/08	8/2020 21:27	WG1456	967	
Volatile Organic Com	pounds (GC/N	/IS) by Met	hod 8260	В			
• • •	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0146	0.0266	1	04/05/2020 10:20	WG1455717
Acrylonitrile	U		0.00202	0.0133	1	04/05/2020 10:20	WG1455717
Benzene	U		0.000425	0.00106	1	04/05/2020 10:20	WG1455717
Bromobenzene	U		0.00112	0.0133	1	04/05/2020 10:20	WG1455717
Bromodichloromethane	U		0.000838	0.00266	1	04/05/2020 10:20	WG1455717
Bromoform	U		0.00636	0.0266	1	04/05/2020 10:20	WG1455717
Bromomethane	U		0.00393	0.0133	1	04/05/2020 10:20	WG1455717
n-Butylbenzene	U		0.00408	0.0133	1	04/05/2020 10:20	WG1455717
sec-Butylbenzene	U		0.00269	0.0133	1 1	04/05/2020 10:20	WG1455717
tert-Butylbenzene	U		0.00165 0.00115	0.00532	1	04/05/2020 10:20 04/05/2020 10:20	WG1455717
Carbon tetrachloride Chlorobenzene	U		0.000609		1	04/05/2020 10:20	WG1455717
Chlorodibromomethane	U		0.000809	0.00266	1		WG1455717
Chloroethane	U		0.000478	0.00266	1	04/05/2020 10:20 04/05/2020 10:20	WG1455717 WG1455717
Chloroform	U		0.00015	0.00552	1	04/05/2020 10:20	WG1455717 WG1455717
Chloromethane	U		0.000441	0.00200	1	04/05/2020 10:20	WG1455717 WG1455717
2-Chlorotoluene	U		0.000978	0.00266	1	04/05/2020 10:20	WG1455717
4-Chlorotoluene	U		0.00120	0.00200	1	04/05/2020 10:20	WG1455717
1,2-Dibromo-3-Chloropropane	U		0.00542	0.0266	1	04/05/2020 10:20	WG1455717
1.2-Dibromoethane	U		0.000558	0.00266	1	04/05/2020 10:20	WG1455717
Dibromomethane	U		0.00106	0.00532	1	04/05/2020 10:20	WG1455717
1,2-Dichlorobenzene	U		0.00154	0.00532	1	04/05/2020 10:20	WG1455717
1,3-Dichlorobenzene	U		0.00181	0.00532	1	04/05/2020 10:20	WG1455717
1,4-Dichlorobenzene	U		0.00209	0.00532	1	04/05/2020 10:20	WG1455717
Dichlorodifluoromethane	U	<u>J4</u>	0.000870	0.00266	1	04/05/2020 10:20	WG1455717
1,1-Dichloroethane	U	<u> </u>	0.000611	0.00266	1	04/05/2020 10:20	WG1455717
1,2-Dichloroethane	U		0.000505	0.00266	1	04/05/2020 10:20	WG1455717
1,1-Dichloroethene	U		0.000532	0.00266	1	04/05/2020 10:20	WG1455717
cis-1,2-Dichloroethene	U		0.000734	0.00266	1	04/05/2020 10:20	WG1455717
trans-1,2-Dichloroethene	U		0.00152	0.00532	1	04/05/2020 10:20	WG1455717
1,2-Dichloropropane	U	<u>J4</u>	0.00135	0.00532	1	04/05/2020 10:20	WG1455717
1,1-Dichloropropene	U	<u> </u>	0.000744	0.00266	1	04/05/2020 10:20	WG1455717
1,3-Dichloropropane	U		0.00186	0.00532	1	04/05/2020 10:20	WG1455717
cis-1,3-Dichloropropene	U		0.000721	0.00266	1	04/05/2020 10:20	WG1455717
trans-1,3-Dichloropropene	U		0.00163	0.00532	1	04/05/2020 10:20	WG1455717
2,2-Dichloropropane	U		0.000843	0.00266	1	04/05/2020 10:20	WG1455717
Di isanyanyi othay	11		0.000272	0.00100	1	04/05/2020 10:20	WC14EE717

U

U

U

U

U

U

U

U

U

U

U

U

U

0.0165

PROJECT: 2t009

0.000372

0.000563

0.000917

0.00248

0.0133

0.00706

0.0106

0.000314

0.00332

0.00125

0.00290

0.000532

0.000415

ΒJ

0.0135

0.00106

0.00266

0.0266

0.00266

0.00532

0.0266

0.0266

0.0266

0.00106

0.0133

0.00532

0.00266

0.00266

0.0133

1

1

1

1

1

1

1

1

1

1

1

1

1

1

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

04/05/2020 10:20

SDG: L1205565

DATE/TIME: 04/10/20 18:37

WG1455717

54 of 88

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000718	0.00266	1	04/05/2020 10:20	WG1455717	
Tetrachloroethene	0.0934		0.000744	0.00266	1	04/05/2020 10:20	WG1455717	
Toluene	U		0.00133	0.00532	1	04/05/2020 10:20	WG1455717	
1,2,3-Trichlorobenzene	U		0.000664	0.0133	1	04/05/2020 10:20	WG1455717	
1,2,4-Trichlorobenzene	U		0.00512	0.0133	1	04/05/2020 10:20	WG1455717	
1,1,1-Trichloroethane	U		0.000292	0.00266	1	04/05/2020 10:20	WG1455717	
1,1,2-Trichloroethane	U		0.000939	0.00266	1	04/05/2020 10:20	WG1455717	
Trichloroethene	U		0.000425	0.00106	1	04/05/2020 10:20	WG1455717	
Trichlorofluoromethane	U		0.000532	0.00266	1	04/05/2020 10:20	WG1455717	
1,2,3-Trichloropropane	U		0.00542	0.0133	1	04/05/2020 10:20	WG1455717	
1,2,4-Trimethylbenzene	U		0.00123	0.00532	1	04/05/2020 10:20	WG1455717	
1,2,3-Trimethylbenzene	U		0.00122	0.00532	1	04/05/2020 10:20	WG1455717	
1,3,5-Trimethylbenzene	U		0.00115	0.00532	1	04/05/2020 10:20	WG1455717	
Vinyl chloride	U		0.000726	0.00266	1	04/05/2020 10:20	WG1455717	
Xylenes, Total	U		0.00508	0.00691	1	04/05/2020 10:20	WG1455717	
(S) Toluene-d8	106			75.0-131		04/05/2020 10:20	WG1455717	
(S) 4-Bromofluorobenzene	97.2			67.0-138		04/05/2020 10:20	WG1455717	
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		04/05/2020 10:20	WG1455717	

SDG: L1205565 DATE/TIME: 04/10/20 18:37

Collected date/time: 04/02/20 00:00

SAMPLE RESULTS - 27 L1205565

Total Solids by Method 2540 G-2011

···· ··· ··· ··· ··· ··· ··· ··· ··· ·		-				l'Cn	L
	Result	Qualifier	Dilution	Analysis	Batch	Cp	
Analyte	%			date / time		2	i
Total Solids	78.3		1	04/08/2020 21:27	WG1456967	Tc	

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	U		0.0175	0.0319	1	04/05/2020 10:39	WG1455717	
crylonitrile	U		0.00243	0.0160	1	04/05/2020 10:39	WG1455717	
enzene	U		0.00243	0.00128	1	04/05/2020 10:39	WG1455717 WG1455717	
romobenzene	U		0.00134	0.00128	1	04/05/2020 10:39	WG1455717	
romodichloromethane	U		0.00134	0.00319	1	04/05/2020 10:39	WG1455717	
romoform	U		0.00764	0.0319	1	04/05/2020 10:39	WG1455717	
romomethane	U		0.00473	0.0160	1	04/05/2020 10:39	WG1455717	
Butylbenzene	U		0.00473	0.0160	1	04/05/2020 10:39	WG1455717	
ec-Butylbenzene	U		0.00323	0.0160	1	04/05/2020 10:39	WG1455717	
rt-Butylbenzene	U		0.00198	0.00639	1	04/05/2020 10:39	WG1455717	
arbon tetrachloride	U		0.00138	0.00639	1	04/05/2020 10:39	WG1455717	
llorobenzene	U		0.000732	0.00319	1	04/05/2020 10:39	WG1455717	
llorodibromomethane	U		0.000575	0.00319	1	04/05/2020 10:39	WG1455717	
lloroethane	U		0.000375	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
loroform	U		0.000530	0.00039	1	04/05/2020 10:39	WG1455717 WG1455717	
lloromethane	U		0.000530	0.00319	1	04/05/2020 10:39	WG1455717 WG1455717	
Chlorotoluene	U		0.00178	0.0080	1	04/05/2020 10:39	WG1455717 WG1455717	
Chlorotoluene	U		0.00118	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
P-Dibromo-3-Chloropropane	U		0.00652	0.00039	1	04/05/2020 10:39	WG1455717	
2-Dibromoethane	U		0.00052	0.00319	1	04/05/2020 10:39	WG1455717	
promomethane	U		0.000071	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
2-Dichlorobenzene	U		0.00128	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
-Dichlorobenzene	U		0.00185	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
-Dichlorobenzene	U		0.00217	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
chlorodifluoromethane	U	14	0.00232	0.00039	1	04/05/2020 10:39	WG1455717 WG1455717	
	U	<u>J4</u>	0.000735	0.00319	1	04/05/2020 10:39	WG1455717 WG1455717	
-Dichloroethane 2-Dichloroethane	U		0.000735	0.00319	1	04/05/2020 10:39	WG1455717 WG1455717	
	U		0.000639		1			
-Dichloroethene	0.00189	1	0.000839	0.00319 0.00319	1	04/05/2020 10:39	WG1455717	
s-1,2-Dichloroethene	U.UU189	J	0.000881	0.00639	1	04/05/2020 10:39 04/05/2020 10:39	WG1455717 WG1455717	
P-Dichloropropane	U	14	0.00163	0.00639	1	04/05/2020 10:39	WG1455717 WG1455717	
-Dichloropropene	U	<u>J4</u>	0.000894	0.00039	1	04/05/2020 10:39	WG1455717 WG1455717	
	U		0.000894	0.00639	1	04/05/2020 10:39	WG1455717	
l-Dichloropropane	U		0.00224		1	04/05/2020 10:39		
s-1,3-Dichloropropene				0.00319			WG1455717	
ans-1,3-Dichloropropene	UU		0.00195	0.00639	1	04/05/2020 10:39	WG1455717	
2-Dichloropropane			0.00101			04/05/2020 10:39	WG1455717 WG1455717	
-isopropyl ether nylbenzene	UU		0.000447	0.00128	1	04/05/2020 10:39	WG1455717	
exachloro-1,3-butadiene			0.000677	0.00319 0.0319		04/05/2020 10:39	WG1455717 WG1455717	
,	U				1	04/05/2020 10:39	WG1455717	
opropylbenzene	U		0.00110	0.00319 0.00639	1	04/05/2020 10:39	WG1455717	
sopropyltoluene	U 0.0487	P	0.00298		1	04/05/2020 10:39	WG1455717	
Butanone (MEK)	0.0487	B	0.0160	0.0319	1	04/05/2020 10:39	WG1455717	
ethylene Chloride	U		0.00848	0.0319	1	04/05/2020 10:39	WG1455717	
Methyl-2-pentanone (MIBK)	U		0.0128	0.0319	1	04/05/2020 10:39	WG1455717	
ethyl tert-butyl ether	U		0.000377	0.00128	1	04/05/2020 10:39	WG1455717	
aphthalene	U		0.00399	0.0160	1	04/05/2020 10:39	WG1455717	
Propylbenzene	U		0.00151	0.00639	1	04/05/2020 10:39	WG1455717	
yrene	U		0.00349	0.0160	1	04/05/2020 10:39	WG1455717	
I,1,2-Tetrachloroethane	U		0.000639	0.00319	1	04/05/2020 10:39	WG1455717	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

PAGE: 56 of 88

SAMPLE RESULTS - 27 L1205565

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000862	0.00319	1	04/05/2020 10:39	WG1455717	
Tetrachloroethene	0.0179		0.000894	0.00319	1	04/05/2020 10:39	WG1455717	
Toluene	U		0.00160	0.00639	1	04/05/2020 10:39	WG1455717	
1,2,3-Trichlorobenzene	U		0.000798	0.0160	1	04/05/2020 10:39	WG1455717	
1,2,4-Trichlorobenzene	U		0.00616	0.0160	1	04/05/2020 10:39	WG1455717	
1,1,1-Trichloroethane	U		0.000351	0.00319	1	04/05/2020 10:39	WG1455717	
1,1,2-Trichloroethane	U		0.00113	0.00319	1	04/05/2020 10:39	WG1455717	
Trichloroethene	0.00309		0.000511	0.00128	1	04/05/2020 10:39	WG1455717	
Trichlorofluoromethane	U		0.000639	0.00319	1	04/05/2020 10:39	WG1455717	
1,2,3-Trichloropropane	U		0.00652	0.0160	1	04/05/2020 10:39	WG1455717	
1,2,4-Trimethylbenzene	U		0.00148	0.00639	1	04/05/2020 10:39	WG1455717	
1,2,3-Trimethylbenzene	U		0.00147	0.00639	1	04/05/2020 10:39	WG1455717	
1,3,5-Trimethylbenzene	U		0.00138	0.00639	1	04/05/2020 10:39	WG1455717	
Vinyl chloride	U		0.000873	0.00319	1	04/05/2020 10:39	WG1455717	
Xylenes, Total	U		0.00611	0.00830	1	04/05/2020 10:39	WG1455717	
(S) Toluene-d8	105			75.0-131		04/05/2020 10:39	WG1455717	
(S) 4-Bromofluorobenzene	95.0			67.0-138		04/05/2020 10:39	WG1455717	
(S) 1,2-Dichloroethane-d4	89.0			70.0-130		04/05/2020 10:39	WG1455717	

SDG: L1205565

DATE/TIME: 04/10/20 18:37

Collected date/time: 04/02/20 00:00

SAMPLE RESULTS - 28 L1205565

ONE LAB. NATIONWIDE.

3

	Result	Qualifier	Dilution Analys		Batch			
Analyte Total Solids	% 85.1		date /	/ time 8/2020 21:27	WG14569)67		
	03.1		1 04/00	/2020 21.27	<u>wo14303</u>	<u>507</u>		
olatile Organic Com	pounds (GC/	MS) by Me	thod 8260	В				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
nalyte	mg/kg		mg/kg	mg/kg		date / time		
cetone	U		0.0161	0.0294	1	04/04/2020 22:47	WG1455731	
crylonitrile	U		0.00223	0.0147	1	04/04/2020 22:47	WG1455731	
enzene	U		0.000470	0.00117	1	04/04/2020 22:47	WG1455731	
romobenzene	U		0.00123	0.0147	1	04/04/2020 22:47	WG1455731	
romodichloromethane	U		0.000926	0.00294	1	04/04/2020 22:47	WG1455731	
romoform	U		0.00703	0.0294	1	04/04/2020 22:47	WG1455731	
romomethane	U		0.00435	0.0147	1	04/04/2020 22:47	WG1455731	
-Butylbenzene	U		0.00451	0.0147	1	04/04/2020 22:47	WG1455731	
ec-Butylbenzene	U		0.00297	0.0147	1	04/04/2020 22:47	WG1455731	
ert-Butylbenzene	U		0.00182	0.00587	1	04/04/2020 22:47	WG1455731	
arbon tetrachloride	U		0.00127	0.00587	1	04/04/2020 22:47	WG1455731	
Chlorobenzene	U		0.000673	0.00294	1	04/04/2020 22:47	WG1455731	
Chlorodibromomethane	U		0.000529	0.00294	1	04/04/2020 22:47	WG1455731	
Chloroethane	U		0.00127	0.00587	1	04/04/2020 22:47	WG1455731	
Chloroform	U		0.000488	0.00294	1	04/04/2020 22:47	WG1455731	
Chloromethane	U		0.00163	0.0147	1	04/04/2020 22:47	WG1455731	
-Chlorotoluene	U		0.00108	0.00294	1	04/04/2020 22:47	WG1455731	
-Chlorotoluene	U		0.00133	0.00587	1	04/04/2020 22:47	WG1455731	
2-Dibromo-3-Chloropropane	U		0.00599	0.0294	1	04/04/2020 22:47	WG1455731	
2-Dibromoethane	U		0.000617	0.00294	1	04/04/2020 22:47	WG1455731	
ibromomethane	U		0.00117	0.00587	1	04/04/2020 22:47	WG1455731	
2-Dichlorobenzene	U		0.00170	0.00587	1	04/04/2020 22:47	WG1455731	
3-Dichlorobenzene	U		0.00200	0.00587	1	04/04/2020 22:47	WG1455731	
4-Dichlorobenzene	U		0.00231	0.00587	1	04/04/2020 22:47	WG1455731	
ichlorodifluoromethane	U		0.000961	0.00294	1	04/04/2020 22:47	WG1455731	
1-Dichloroethane	U		0.000676	0.00294	1	04/04/2020 22:47	WG1455731	
2-Dichloroethane	U		0.000558	0.00294	1	04/04/2020 22:47	WG1455731	
1-Dichloroethene	U		0.000587 0.000811	0.00294	1	04/04/2020 22:47	WG1455731 WG1455731	
is-1,2-Dichloroethene ans-1,2-Dichloroethene	U		0.000811	0.00294	1	04/04/2020 22:47		
,	U		0.00188	0.00587	1	04/04/2020 22:47 04/04/2020 22:47	WG1455731	
2-Dichloropropane	U		0.00149	0.00587	1	04/04/2020 22:47	WG1455731 WG1455731	
1-Dichloropropene 3-Dichloropropane	U		0.000822	0.00294	1	04/04/2020 22:47	WG1455731	
is-1,3-Dichloropropene	U		0.00200	0.00387	1	04/04/2020 22:47	WG1455731	
ans-1,3-Dichloropropene	U		0.00180	0.00294	1	04/04/2020 22:47	WG1455731	
,2-Dichloropropane	U		0.000932	0.00294	1	04/04/2020 22:47	WG1455731	
i-isopropyl ether	U		0.000932	0.00294	1	04/04/2020 22:47	WG1455731	
thylbenzene	U		0.000623	0.00294	1	04/04/2020 22:47	WG1455731	
lexachloro-1,3-butadiene	U		0.000023	0.00294	1	04/04/2020 22:47	WG1455731	
sopropylbenzene	U		0.00149	0.0294	1	04/04/2020 22:47	WG1455731	
-Isopropyltoluene	U		0.00101	0.00234	1	04/04/2020 22:47	WG1455731	
-Butanone (MEK)	0.0204	ВJ	0.0147	0.0294	1	04/04/2020 22:47	WG1455731	
lethylene Chloride	U		0.00780	0.0294	1	04/04/2020 22:47	WG1455731	
,	U		0.00780	0.0294	1			
-Methyl-2-pentanone (MIBK) lethyl tert-butyl ether	U		0.000347	0.0294	1	04/04/2020 22:47 04/04/2020 22:47	WG1455731 WG1455731	
laphthalene	U		0.000347	0.00117	1	04/04/2020 22:47	WG1455731	
-Propylbenzene	U		0.00367	0.0147	1	04/04/2020 22:47	WG1455731	
	U		0.00139	0.00587	1			
tyrene 1,1,2-Tetrachloroethane	U		0.00321	0.0147	1	04/04/2020 22:47 04/04/2020 22:47	WG1455731	
1,2,2-Tetrachloroethane	U		0.000587	0.00294	1	04/04/2020 22:47	WG1455731 WG1455731	
1,2,2-1 CH aCHIOI UCHIAIIC	0		0.000400	0.00294	1	04/04/2020 22.4/	W01433731	

Weber, Hayes & Associates - CA

PROJECT: 2t009

L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 58 of 88

X

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000793	0.00294	1	04/04/2020 22:47	WG1455731	
Tetrachloroethene	0.164		0.000822	0.00294	1	04/04/2020 22:47	WG1455731	
Toluene	U		0.00147	0.00587	1	04/04/2020 22:47	WG1455731	
1,2,3-Trichlorobenzene	U		0.000734	0.0147	1	04/04/2020 22:47	WG1455731	
1,2,4-Trichlorobenzene	U		0.00566	0.0147	1	04/04/2020 22:47	WG1455731	
1,1,1-Trichloroethane	U		0.000323	0.00294	1	04/04/2020 22:47	WG1455731	
1,1,2-Trichloroethane	U		0.00104	0.00294	1	04/04/2020 22:47	WG1455731	
Trichloroethene	0.000665	J	0.000470	0.00117	1	04/04/2020 22:47	WG1455731	
Trichlorofluoromethane	U		0.000587	0.00294	1	04/04/2020 22:47	WG1455731	
1,2,3-Trichloropropane	U		0.00599	0.0147	1	04/04/2020 22:47	WG1455731	
1,2,4-Trimethylbenzene	U		0.00136	0.00587	1	04/04/2020 22:47	WG1455731	
1,2,3-Trimethylbenzene	U		0.00135	0.00587	1	04/04/2020 22:47	WG1455731	
1,3,5-Trimethylbenzene	U		0.00127	0.00587	1	04/04/2020 22:47	WG1455731	
Vinyl chloride	U		0.000802	0.00294	1	04/04/2020 22:47	WG1455731	
Xylenes, Total	U		0.00562	0.00764	1	04/04/2020 22:47	WG1455731	
(S) Toluene-d8	115			75.0-131		04/04/2020 22:47	WG1455731	
(S) 4-Bromofluorobenzene	89.6			67.0-138		04/04/2020 22:47	WG1455731	
(S) 1,2-Dichloroethane-d4	89.2			70.0-130		04/04/2020 22:47	WG1455731	

Collected date/time: 04/02/20 00:00

SAMPLE RESULTS - 29

ONE LAB. NATIONWIDE.

-

	Result	Qualifier	Dilution Analys	sis	Batch			
Analyte	%		date /	time				
otal Solids	89.4		1 04/08	/2020 21:27	WG14569	967		
				-				
/olatile Organic Com								
analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	U		0.0153	0.0280	1	04/04/2020 23:06	WG1455731	
Acrylonitrile	U		0.00213	0.0140	1	04/04/2020 23:06	WG1455731	
Benzene	U		0.000448	0.00112	1	04/04/2020 23:06	WG1455731	
Bromobenzene	U		0.00118	0.0140	1	04/04/2020 23:06	WG1455731	
Bromodichloromethane	U		0.000882	0.00280	1	04/04/2020 23:06	WG1455731	
Bromoform	U		0.00669	0.0280	1	04/04/2020 23:06	WG1455731	
Bromomethane	U		0.00414	0.0140	1	04/04/2020 23:06	WG1455731	
n-Butylbenzene	U		0.00430	0.0140	1	04/04/2020 23:06	WG1455731	
ec-Butylbenzene	U		0.00283	0.0140	1	04/04/2020 23:06	WG1455731	
ert-Butylbenzene	U		0.00173	0.00560	1	04/04/2020 23:06	WG1455731	
Carbon tetrachloride	U		0.00121	0.00560	1	04/04/2020 23:06	WG1455731	
Chlorobenzene	U		0.000641	0.00280	1	04/04/2020 23:06	WG1455731	
Chlorodibromomethane	U		0.000504	0.00280	1	04/04/2020 23:06	WG1455731	
Chloroethane	U		0.00121	0.00560	1	04/04/2020 23:06	WG1455731	
Chloroform	U		0.000464	0.00280	1	04/04/2020 23:06	WG1455731	
Chloromethane	U		0.00156	0.0140	1	04/04/2020 23:06	WG1455731	
2-Chlorotoluene	U		0.00103	0.00280	1	04/04/2020 23:06	WG1455731	
1-Chlorotoluene	U		0.00126	0.00560	1	04/04/2020 23:06	WG1455731	
,2-Dibromo-3-Chloropropane	U		0.00571	0.0280	1	04/04/2020 23:06	WG1455731	
,2-Dibromoethane	U		0.000588	0.00280	1	04/04/2020 23:06	WG1455731	
Dibromomethane	U		0.00112	0.00560	1	04/04/2020 23:06	WG1455731	
,2-Dichlorobenzene	U		0.00162	0.00560	1	04/04/2020 23:06	WG1455731	
,3-Dichlorobenzene	U		0.00190	0.00560	1	04/04/2020 23:06	WG1455731	
,4-Dichlorobenzene	U		0.00220	0.00560	1	04/04/2020 23:06	WG1455731	
Dichlorodifluoromethane	U		0.000915	0.00280	1	04/04/2020 23:06	WG1455731	
,1-Dichloroethane	U		0.000643	0.00280	1	04/04/2020 23:06	WG1455731	
,2-Dichloroethane	U		0.000532	0.00280	1	04/04/2020 23:06	WG1455731	
,1-Dichloroethene	U		0.000560	0.00280	1	04/04/2020 23:06	WG1455731	
cis-1,2-Dichloroethene	U		0.000772	0.00280	1	04/04/2020 23:06	WG1455731	
rans-1,2-Dichloroethene	U		0.00160	0.00560	1	04/04/2020 23:06	WG1455731	
,2-Dichloropropane	U		0.00142	0.00560	1	04/04/2020 23:06	WG1455731	
,1-Dichloropropene	U		0.000783	0.00280	1	04/04/2020 23:06	WG1455731	
,3-Dichloropropane	U		0.00196	0.00560	1	04/04/2020 23:06	WG1455731	
cis-1,3-Dichloropropene	U		0.000759	0.00280	1	04/04/2020 23:06	WG1455731	
rans-1,3-Dichloropropene	U		0.00171	0.00560	1	04/04/2020 23:06	WG1455731	
2,2-Dichloropropane	U		0.000887	0.00280	1	04/04/2020 23:06	WG1455731	
Di-isopropyl ether	U		0.000392	0.00112	1	04/04/2020 23:06	WG1455731	
Ethylbenzene	U		0.000593	0.00280	1	04/04/2020 23:06	WG1455731	
Hexachloro-1,3-butadiene	U		0.0142	0.0280	1	04/04/2020 23:06	WG1455731	
sopropylbenzene	U		0.000966	0.00280	1	04/04/2020 23:06	WG1455731	
o-Isopropyltoluene	U		0.00261	0.00560	1	04/04/2020 23:06	WG1455731	
2-Butanone (MEK)	0.0489	В	0.0140	0.0280	1	04/04/2020 23:06	WG1455731	
lethylene Chloride	U		0.00743	0.0280	1	04/04/2020 23:06	WG1455731	
-Methyl-2-pentanone (MIBK)	U		0.0112	0.0280	1	04/04/2020 23:06	WG1455731	
Nethyl tert-butyl ether	U		0.000330	0.00112	1	04/04/2020 23:06	WG1455731	
laphthalene	U		0.00349	0.0140	1	04/04/2020 23:06	WG1455731	
n-Propylbenzene	U		0.00132	0.00560	1	04/04/2020 23:06	WG1455731	
Styrene	U		0.00306	0.0140	1	04/04/2020 23:06	WG1455731	
,1,1,2-Tetrachloroethane	U		0.000560	0.00280	1	04/04/2020 23:06	WG1455731	
,1,2,2-Tetrachloroethane	U		0.000436	0.00280	1	04/04/2020 23:06	WG1455731	

Weber, Hayes & Associates - CA

PROJECT: 2t009

L1205565

DATE/TIME: 04/10/20 18:37 PAGE: 60 of 88

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000755	0.00280	1	04/04/2020 23:06	WG1455731	
Tetrachloroethene	0.0338		0.000783	0.00280	1	04/04/2020 23:06	WG1455731	
Toluene	U		0.00140	0.00560	1	04/04/2020 23:06	WG1455731	
1,2,3-Trichlorobenzene	U		0.000699	0.0140	1	04/04/2020 23:06	WG1455731	
1,2,4-Trichlorobenzene	U		0.00539	0.0140	1	04/04/2020 23:06	WG1455731	
1,1,1-Trichloroethane	U		0.000308	0.00280	1	04/04/2020 23:06	WG1455731	
1,1,2-Trichloroethane	U		0.000988	0.00280	1	04/04/2020 23:06	WG1455731	
Trichloroethene	U		0.000448	0.00112	1	04/04/2020 23:06	WG1455731	
Trichlorofluoromethane	U		0.000560	0.00280	1	04/04/2020 23:06	WG1455731	
1,2,3-Trichloropropane	U		0.00571	0.0140	1	04/04/2020 23:06	WG1455731	
1,2,4-Trimethylbenzene	U		0.00130	0.00560	1	04/04/2020 23:06	WG1455731	
1,2,3-Trimethylbenzene	U		0.00129	0.00560	1	04/04/2020 23:06	WG1455731	
1,3,5-Trimethylbenzene	U		0.00121	0.00560	1	04/04/2020 23:06	WG1455731	
Vinyl chloride	U		0.000764	0.00280	1	04/04/2020 23:06	WG1455731	
Xylenes, Total	U		0.00535	0.00727	1	04/04/2020 23:06	WG1455731	
(S) Toluene-d8	114			75.0-131		04/04/2020 23:06	WG1455731	
(S) 4-Bromofluorobenzene	89.2			67.0-138		04/04/2020 23:06	WG1455731	
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		04/04/2020 23:06	WG1455731	

SDG: L1205565 Collected date/time: 04/02/20 00:00

Total Solids by Method 2540 G-2011

SAMPLE RESULTS - 30 L1205565

ONE LAB. NATIONWIDE.

20

Ср

Тс

Ss

Cn

Qc

Gl

Â

Sc

PAGE: 62 of 88

Analyte	Result %	Qualifier	Dilution Analy date /		Batch		
Total Solids	86.2			8/2020 19:42	WG1456	968	
	00.2		0 0 0 0	2020 13.12			
Volatile Organic Com	pounds (GC/	MS) by Me	thod 8260	В			
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
Acetone	U		0.0159	0.0290	1	04/04/2020 23:25	WG1455731
Acrylonitrile	U		0.00220	0.0145	1	04/04/2020 23:25	WG1455731
Benzene	U		0.000464	0.00116	1	04/04/2020 23:25	WG1455731
Bromobenzene	U		0.00122	0.0145	1	04/04/2020 23:25	WG1455731
Bromodichloromethane	U		0.000914	0.00290	1	04/04/2020 23:25	WG1455731
Bromoform	U		0.00694	0.0290	1	04/04/2020 23:25	WG1455731
Bromomethane	U		0.00429	0.0145	1	04/04/2020 23:25	WG1455731
n-Butylbenzene	U		0.00446	0.0145	1	04/04/2020 23:25	WG1455731
sec-Butylbenzene	U		0.00294	0.0145	1	04/04/2020 23:25	WG1455731
tert-Butylbenzene	U		0.00180	0.00580	1	04/04/2020 23:25	WG1455731
Carbon tetrachloride	U		0.00125	0.00580	1	04/04/2020 23:25	WG1455731
Chlorobenzene	U		0.000665	0.00290	1	04/04/2020 23:25	WG1455731
Chlorodibromomethane	U		0.000522	0.00290	1	04/04/2020 23:25	WG1455731
Chloroethane	U		0.00125	0.00580	1	04/04/2020 23:25	WG1455731
Chloroform	U		0.000482	0.00290	1	04/04/2020 23:25	WG1455731
Chloromethane	U		0.00161	0.0145	1	04/04/2020 23:25	WG1455731
2-Chlorotoluene	U		0.00107	0.00290	1	04/04/2020 23:25	WG1455731
4-Chlorotoluene	U		0.00131	0.00580	1	04/04/2020 23:25	WG1455731
1,2-Dibromo-3-Chloropropane	U		0.00592	0.0290	1	04/04/2020 23:25	WG1455731
1,2-Dibromoethane	U		0.000609	0.00290	1	04/04/2020 23:25	WG1455731
Dibromomethane	U		0.00116	0.00580	1	04/04/2020 23:25	WG1455731
1,2-Dichlorobenzene	U		0.00168	0.00580	1	04/04/2020 23:25	WG1455731
1,3-Dichlorobenzene	U		0.00197	0.00580	1	04/04/2020 23:25	WG1455731
1,4-Dichlorobenzene	U		0.00229	0.00580	1	04/04/2020 23:25	WG1455731
Dichlorodifluoromethane	U		0.000949	0.00290	1	04/04/2020 23:25	WG1455731
1,1-Dichloroethane	U		0.000667	0.00290	1	04/04/2020 23:25	WG1455731
1,2-Dichloroethane	U		0.000551	0.00290	1	04/04/2020 23:25	WG1455731
1,1-Dichloroethene	U		0.000580	0.00290	1	04/04/2020 23:25	WG1455731
cis-1,2-Dichloroethene	U		0.000801	0.00290	1	04/04/2020 23:25	WG1455731
trans-1,2-Dichloroethene	U		0.00166	0.00580	1	04/04/2020 23:25	WG1455731
1,2-Dichloropropane	U		0.00147	0.00580	1	04/04/2020 23:25	WG1455731
1,1-Dichloropropene	U		0.000812	0.00290	1	04/04/2020 23:25	WG1455731
1,3-Dichloropropane	U		0.00203	0.00580	1	04/04/2020 23:25	WG1455731
cis-1,3-Dichloropropene	U		0.000787	0.00290	1	04/04/2020 23:25	WG1455731
trans-1,3-Dichloropropene	U		0.00178	0.00580	1	04/04/2020 23:25	WG1455731
2,2-Dichloropropane	U		0.000920	0.00290	1	04/04/2020 23:25	WG1455731
Di-isopropyl ether	U		0.000406	0.00116	1	04/04/2020 23:25	WG1455731
Ethylbenzene	U		0.000615	0.00290	1	04/04/2020 23:25	WG1455731
Hexachloro-1,3-butadiene	U		0.0147	0.0290	1	04/04/2020 23:25	WG1455731
Isopropylbenzene	U		0.00100	0.00290	1	04/04/2020 23:25	WG1455731
p-Isopropyltoluene 2-Butanone (MEK)	U 0.0303	D	0.00270	0.00580	1	04/04/2020 23:25 04/04/2020 23:25	WG1455731 WG1455731
	U.0303	B	0.0045				
Methylene Chloride 4-Methyl-2-pentanone (MIBK)	U		0.0116	0.0290	1	04/04/2020 23:25 04/04/2020 23:25	WG1455731 WG1455731
Methyl tert-butyl ether	U		0.000342	0.0290	1	04/04/2020 23:25	WG1455731
Naphthalene	U		0.000342	0.0145	1	04/04/2020 23:25	WG1455731
n-Propylbenzene	U		0.00302	0.00580	1	04/04/2020 23:25	WG1455731
Styrene	U		0.00137	0.00580	1	04/04/2020 23:25	WG1455731
1,1,1,2-Tetrachloroethane	U		0.000580	0.00290	1	04/04/2020 23:25	WG1455731
1,1,2,2-Tetrachloroethane	U		0.000453	0.00290	1	04/04/2020 23:25	WG1455731
ACCOUN			PROJEC	T:	SI	DG:	DATE/TIME:
Weber, Hayes & Ass	sociates - CA		2t009		L120	5565	04/10/20 18:37

GW-5-D27 Collected date/time: 04/02/20 00:00

SAMPLE RESULTS - 30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000783	0.00290	1	04/04/2020 23:25	WG1455731	
Tetrachloroethene	0.220		0.000812	0.00290	1	04/04/2020 23:25	WG1455731	
Toluene	U		0.00145	0.00580	1	04/04/2020 23:25	WG1455731	
1,2,3-Trichlorobenzene	U		0.000725	0.0145	1	04/04/2020 23:25	WG1455731	
1,2,4-Trichlorobenzene	U		0.00559	0.0145	1	04/04/2020 23:25	WG1455731	
1,1,1-Trichloroethane	U		0.000319	0.00290	1	04/04/2020 23:25	WG1455731	
1,1,2-Trichloroethane	U		0.00102	0.00290	1	04/04/2020 23:25	WG1455731	
Trichloroethene	U		0.000464	0.00116	1	04/04/2020 23:25	WG1455731	
Trichlorofluoromethane	U		0.000580	0.00290	1	04/04/2020 23:25	WG1455731	
1,2,3-Trichloropropane	U		0.00592	0.0145	1	04/04/2020 23:25	WG1455731	
1,2,4-Trimethylbenzene	U		0.00135	0.00580	1	04/04/2020 23:25	WG1455731	
1,2,3-Trimethylbenzene	U		0.00133	0.00580	1	04/04/2020 23:25	WG1455731	
1,3,5-Trimethylbenzene	U		0.00125	0.00580	1	04/04/2020 23:25	WG1455731	
Vinyl chloride	U		0.000792	0.00290	1	04/04/2020 23:25	WG1455731	
Xylenes, Total	U		0.00555	0.00754	1	04/04/2020 23:25	WG1455731	
(S) Toluene-d8	118			75.0-131		04/04/2020 23:25	WG1455731	
(S) 4-Bromofluorobenzene	91.9			67.0-138		04/04/2020 23:25	WG1455731	
(S) 1,2-Dichloroethane-d4	88.1			70.0-130		04/04/2020 23:25	WG1455731	

SDG: L1205565 DATE/TIME: 04/10/20 18:37

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3517112-1 04/08	(MB) R3517112-1 04/08/20 22:08							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	%		%	%				
Total Solids	0.00400							

L1205553-31 Original Sample (OS) • Duplicate (DUP)

(OS) L1205553-31 04/0	08/20 22:08 • (D	UP) R3517112-3	04/08/20	22:08		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	86.0	85.6	1	0.564		10

Laboratory Control Sample (LCS)

(LCS) R3517112-2 04/08	8/20 22:08	,			
()	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 64 of 88

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3517107-1 04/0	8/20 21:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1205565-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1205565-10 04/08	3/20 21:48 • (DL	JP) R3517107-3	04/08/20	21:48		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.1	84.5	1	0.372		10

Laboratory Control Sample (LCS)

(LCS) R3517107-2 04/0	_CS) R3517107-2 04/08/20 21:48										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 65 of 88

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1205565-20,21,22,23,24,25,26,27,28,29

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

Method Blank	Method Blank (MB) (MB) R3517104-1 04/08/20 21:27									
(MB) R3517104-1 04										
	MB Result	MB Qualifier	MB MDL	MB RDL	2					
Analyte	%		%	К	Tc					
Total Solids	0.00100									
					^³ Ss					

L1205565-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1205565-20 04/08	OS) L1205565-20 04/08/20 21:27 • (DUP) R3517104-3 04/08/20 21:27										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	%	%		%		%					
Total Solids	82.5	83.2	1	0.844		10					

Laboratory Control Sample (LCS)

(LCS) R3517104-2 04/	08/20 21:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 66 of 88

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3517102-1 04/0	08/20 19:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1205570-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1205570-01 04/08/20 19:42 • (DUP) R3517102-3 04/08/20 19:42										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	%	%		%		%				
Total Solids	71.1	70.8	1	0.424		10				

Laboratory Control Sample (LCS)

(LCS) R3517102-2 04/0	08/20 19:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 67 of 88

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

MB) R3517265-3 04/04/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	ug/l		ug/l	ug/l	
cetone	U		10.0	50.0	
crolein	U		8.87	50.0	
crylonitrile	U		1.87	10.0	
enzene	U		0.331	1.00	
Iromobenzene	U		0.352	1.00	
Bromodichloromethane	U		0.380	1.00	
romoform	U		0.469	1.00	
Bromomethane	U		0.866	5.00	
-Butylbenzene	U		0.361	1.00	
ec-Butylbenzene	U		0.365	1.00	
ert-Butylbenzene	U		0.399	1.00	
Carbon tetrachloride	U		0.379	1.00	
Chlorobenzene	U		0.348	1.00	
Chlorodibromomethane	U		0.327	1.00	
Chloroethane	U		0.453	5.00	
Chloroform	U		0.324	5.00	
hloromethane	U		0.276	2.50	
2-Chlorotoluene	U		0.375	1.00	
-Chlorotoluene	U		0.351	1.00	
2-Dibromo-3-Chloropropane	U		1.33	5.00	
,2-Dibromoethane	U		0.381	1.00	
Dibromomethane	U		0.346	1.00	
,2-Dichlorobenzene	U		0.349	1.00	
,3-Dichlorobenzene	U		0.220	1.00	
,4-Dichlorobenzene	U		0.274	1.00	
Dichlorodifluoromethane	U		0.551	5.00	
,1-Dichloroethane	U		0.259	1.00	
,2-Dichloroethane	U		0.361	1.00	
,1-Dichloroethene	U		0.398	1.00	
is-1,2-Dichloroethene	U		0.260	1.00	
rans-1,2-Dichloroethene	U		0.396	1.00	
,2-Dichloropropane	U		0.306	1.00	
,1-Dichloropropene	U		0.352	1.00	
,3-Dichloropropane	U		0.366	1.00	
is-1,3-Dichloropropene	U		0.418	1.00	
rans-1,3-Dichloropropene	U		0.419	1.00	
2,2-Dichloropropane	U		0.321	1.00	
Di-isopropyl ether	U		0.320	1.00	
thylbenzene	U		0.384	1.00	
lexachloro-1,3-butadiene	U		0.256	1.00	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 68 of 88

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3517265-3 04/04/2	20 18:03				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Isopropylbenzene	U		0.326	1.00	
p-Isopropyltoluene	U		0.350	1.00	³ Ss
2-Butanone (MEK)	U		3.93	10.0	00
Methylene Chloride	U		1.00	5.00	4
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	Cn
Methyl tert-butyl ether	U		0.367	1.00	
Naphthalene	U		1.00	5.00	⁵Sr
n-Propylbenzene	U		0.349	1.00	<u> </u>
Styrene	U		0.307	1.00	6
1,1,1,2-Tetrachloroethane	U		0.385	1.00	⁶ Qc
1,1,2,2-Tetrachloroethane	U		0.130	1.00	
Tetrachloroethene	U		0.372	1.00	⁷ Gl
Toluene	U		0.412	1.00	01
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	8
1,2,3-Trichlorobenzene	U		0.230	1.00	A
1,2,4-Trichlorobenzene	U		0.355	1.00	
1,1,1-Trichloroethane	U		0.319	1.00	°Sc
1,1,2-Trichloroethane	U		0.383	1.00	00
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	
1,2,3-Trichloropropane	U		0.807	2.50	
1,2,3-Trimethylbenzene	U		0.321	1.00	
1,2,4-Trimethylbenzene	U		0.373	1.00	
1,3,5-Trimethylbenzene	U		0.387	1.00	
Vinyl chloride	U		0.259	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	119			80.0-120	
(S) 4-Bromofluorobenzene	105			77.0-126	
(S) 1,2-Dichloroethane-d4	98.8			70.0-130	

Laboratory Control Sample (LCS)

V

(LCS) R3517265-2 04/	.CS) R3517265-2 04/04/20 17:05									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Acetone	25.0	30.2	121	19.0-160						
Acrolein	25.0	0.779	3.12	10.0-160	<u>J4</u>					
Acrylonitrile	25.0	21.9	87.6	55.0-149						
Benzene	5.00	4.76	95.2	70.0-123						

ACCOUNT:	
Neber, Hayes & Associates - CA	

PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37

PAGE: 69 of 88

QUALITY CONTROL SUMMARY

L1205565-03,04,05,06,07,08

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Bromobenzene	5.00	6.14	123	73.0-121	<u>J4</u>
Bromodichloromethane	5.00	4.68	93.6	75.0-120	
Bromoform	5.00	4.44	88.8	68.0-132	
Bromomethane	5.00	3.84	76.8	10.0-160	
n-Butylbenzene	5.00	6.10	122	73.0-125	
sec-Butylbenzene	5.00	5.63	113	75.0-125	
tert-Butylbenzene	5.00	6.22	124	76.0-124	
Carbon tetrachloride	5.00	4.79	95.8	68.0-126	
Chlorobenzene	5.00	5.09	102	80.0-121	
Chlorodibromomethane	5.00	5.22	104	77.0-125	
Chloroethane	5.00	3.36	67.2	47.0-150	
Chloroform	5.00	4.76	95.2	73.0-120	
Chloromethane	5.00	4.84	96.8	41.0-142	
2-Chlorotoluene	5.00	6.16	123	76.0-123	
4-Chlorotoluene	5.00	6.06	121	75.0-122	
I,2-Dibromo-3-Chloropropane	5.00	4.59	91.8	58.0-134	
,2-Dibromoethane	5.00	5.42	108	80.0-122	
Dibromomethane	5.00	4.67	93.4	80.0-120	
1,2-Dichlorobenzene	5.00	5.61	112	79.0-121	
1,3-Dichlorobenzene	5.00	5.12	102	79.0-120	
1,4-Dichlorobenzene	5.00	4.96	99.2	79.0-120	
Dichlorodifluoromethane	5.00	6.56	131	51.0-149	
I,1-Dichloroethane	5.00	4.72	94.4	70.0-126	
I,2-Dichloroethane	5.00	4.56	91.2	70.0-128	
1,1-Dichloroethene	5.00	4.70	94.0	71.0-124	
cis-1,2-Dichloroethene	5.00	4.90	98.0	73.0-120	
trans-1,2-Dichloroethene	5.00	4.77	95.4	73.0-120	
1,2-Dichloropropane	5.00	4.62	92.4	77.0-125	
I,1-Dichloropropene	5.00	4.74	94.8	74.0-126	
1,3-Dichloropropane	5.00	5.24	105	80.0-120	
cis-1,3-Dichloropropene	5.00	4.50	90.0	80.0-123	
trans-1,3-Dichloropropene	5.00	4.69	93.8	78.0-124	
2,2-Dichloropropane	5.00	5.23	105	58.0-130	
Di-isopropyl ether	5.00	4.45	89.0	58.0-138	
Ethylbenzene	5.00	4.91	98.2	79.0-123	
Hexachloro-1,3-butadiene	5.00	5.76	115	54.0-138	
Isopropylbenzene	5.00	5.21	104	76.0-127	
p-lsopropyltoluene	5.00	5.19	104	76.0-125	
2-Butanone (MEK)	25.0	24.4	97.6	44.0-160	
Methylene Chloride	5.00	4.98	99.6	67.0-120	

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 70 of 88

QUALITY CONTROL SUMMARY

L1205565-03,04,05,06,07,08

(LCS) R3517265-2 04/04/2	20 17:05					ΟP
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	2
Analyte	ug/l	ug/l	%	%		Tc
4-Methyl-2-pentanone (MIBK)	25.0	21.9	87.6	68.0-142		
Methyl tert-butyl ether	5.00	4.40	88.0	68.0-125		³ Ss
Naphthalene	5.00	4.58	91.6	54.0-135		00
n-Propylbenzene	5.00	6.12	122	77.0-124		4
Styrene	5.00	4.68	93.6	73.0-130		[≁] Cn
1,1,1,2-Tetrachloroethane	5.00	5.23	105	75.0-125		
1,1,2,2-Tetrachloroethane	5.00	6.33	127	65.0-130		⁵Sr
Tetrachloroethene	5.00	5.10	102	72.0-132		
Toluene	5.00	5.11	102	79.0-120		6_
1,1,2-Trichlorotrifluoroethane	5.00	4.47	89.4	69.0-132		ိပ္ရင
1,2,3-Trichlorobenzene	5.00	4.97	99.4	50.0-138		
1,2,4-Trichlorobenzene	5.00	5.28	106	57.0-137		⁷ Gl
1,1,1-Trichloroethane	5.00	5.16	103	73.0-124		<u> </u>
1,1,2-Trichloroethane	5.00	5.44	109	80.0-120		8
Trichloroethene	5.00	4.72	94.4	78.0-124		A
Trichlorofluoromethane	5.00	6.18	124	59.0-147		
1,2,3-Trichloropropane	5.00	6.84	137	73.0-130	<u>J4</u>	Sc
1,2,3-Trimethylbenzene	5.00	5.43	109	77.0-120		00
1,2,4-Trimethylbenzene	5.00	5.60	112	76.0-121		
1,3,5-Trimethylbenzene	5.00	6.36	127	76.0-122	<u>J4</u>	
Vinyl chloride	5.00	4.21	84.2	67.0-131		
Xylenes, Total	15.0	15.2	101	79.0-123		
(S) Toluene-d8			115	80.0-120		
(S) 4-Bromofluorobenzene			107	77.0-126		
(S) 1,2-Dichloroethane-d4			100	70.0-130		

DATE/TIME: 04/10/20 18:37

PAGE: 71 of 88

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

	/					Cp		
(MB) R3517527-3 04/09/20 18:00								
	MB Result	MB Qualifier	MB MDL	MB RDL		2		
Analyte	ug/l		ug/l	ug/l		² Tc		
Tetrachloroethene	U		0.372	1.00				
(S) Toluene-d8	106			80.0-120		³ Ss		
(S) 4-Bromofluorobenzene	94.2			77.0-126		00		
(S) 1,2-Dichloroethane-d4	109			70.0-130		4		
						Cn		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3517527-1 04/09/2	20 16:23 • (LCSE	D) R3517527-2	2 04/09/20 16:4	43						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Tetrachloroethene	5.00	4.36	4.51	87.2	90.2	72.0-132			3.38	20
(S) Toluene-d8				105	104	80.0-120				
(S) 4-Bromofluorobenzene				93.8	95.4	77.0-126				
(S) 1,2-Dichloroethane-d4				111	111	70.0-130				

DATE/TIME: 04/10/20 18:37 PAGE: 72 of 88

QUALITY CONTROL SUMMARY 1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL		-
Analyte	mg/kg		mg/kg	mg/kg		
Acetone	U		0.0137	0.0250		
Acrylonitrile	U		0.00190	0.0125		1
Benzene	U		0.000400	0.00100		
Bromobenzene	U		0.00105	0.0125		
Bromodichloromethane	U		0.000788	0.00250		
Bromoform	U		0.00598	0.0250		L
Bromomethane	U		0.00370	0.0125		Ę
n-Butylbenzene	U		0.00384	0.0125		
sec-Butylbenzene	U		0.00253	0.0125		
tert-Butylbenzene	U		0.00155	0.00500		
Carbon tetrachloride	U		0.00108	0.00500		
Chlorobenzene	U		0.000573	0.00250		
Chlorodibromomethane	U		0.000450	0.00250		
Chloroethane	U		0.00108	0.00500		
Chloroform	U		0.000415	0.00250		
Chloromethane	U		0.00139	0.0125		L
2-Chlorotoluene	U		0.000920	0.00250		Ş
4-Chlorotoluene	U		0.00113	0.00500		
1,2-Dibromo-3-Chloropropane	U		0.00510	0.0250		
1,2-Dibromoethane	U		0.000525	0.00250		
Dibromomethane	U		0.00100	0.00500		
1,2-Dichlorobenzene	U		0.00145	0.00500		
1,3-Dichlorobenzene	U		0.00170	0.00500		
1,4-Dichlorobenzene	U		0.00197	0.00500		
Dichlorodifluoromethane	U		0.000818	0.00250		
1,1-Dichloroethane	U		0.000575	0.00250		
1,2-Dichloroethane	U		0.000475	0.00250		
1,1-Dichloroethene	U		0.000500	0.00250		
cis-1,2-Dichloroethene	U		0.000690	0.00250		
trans-1,2-Dichloroethene	U		0.00143	0.00500		
1,2-Dichloropropane	U		0.00127	0.00500		
1,1-Dichloropropene	U		0.000700	0.00250		
1,3-Dichloropropane	U		0.00175	0.00500		
cis-1,3-Dichloropropene	U		0.000678	0.00250		
trans-1,3-Dichloropropene	U		0.00153	0.00500		
2,2-Dichloropropane	U		0.000793	0.00250		
Di-isopropyl ether	U		0.000350	0.00100		
Ethylbenzene	U		0.000530	0.00250		
Hexachloro-1,3-butadiene	U		0.0127	0.0250		
Isopropylbenzene	U		0.000863	0.00250		

Weber, Hayes & Associates - CA

2t009

L1205565

DATE/TIME: 04/10/20 18:37 PAGE: 73 of 88

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Method Blank (MB)

(MB) R3517285-2 04/05/2	20 03:49				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
p-lsopropyltoluene	U		0.00233	0.00500	
2-Butanone (MEK)	0.0223	J	0.0125	0.0250	³ Ss
Methylene Chloride	U		0.00664	0.0250	00
4-Methyl-2-pentanone (MIBK)	U		0.0100	0.0250	4
Methyl tert-butyl ether	U		0.000295	0.00100	Cn
Naphthalene	U		0.00312	0.0125	
n-Propylbenzene	U		0.00118	0.00500	⁵Sr
Styrene	U		0.00273	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000500	0.00250	6
1,1,2,2-Tetrachloroethane	U		0.000390	0.00250	ଁQc
Tetrachloroethene	U		0.000700	0.00250	
Toluene	U		0.00125	0.00500	⁷ Gl
1,1,2-Trichlorotrifluoroethane	U		0.000675	0.00250	Ŭ
1,2,3-Trichlorobenzene	U		0.000625	0.0125	8
1,2,4-Trichlorobenzene	U		0.00482	0.0125	A
1,1,1-Trichloroethane	U		0.000275	0.00250	
1,1,2-Trichloroethane	U		0.000883	0.00250	°Sc
Trichloroethene	U		0.000400	0.00100	
Trichlorofluoromethane	U		0.000500	0.00250	
1,2,3-Trichloropropane	U		0.00510	0.0125	
1,2,3-Trimethylbenzene	U		0.00115	0.00500	
1,2,4-Trimethylbenzene	U		0.00116	0.00500	
1,3,5-Trimethylbenzene	U		0.00108	0.00500	
Vinyl chloride	U		0.000683	0.00250	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	108			75.0-131	
(S) 4-Bromofluorobenzene	99.9			67.0-138	
(S) 1,2-Dichloroethane-d4	96.3			70.0-130	

Laboratory Control Sample (LCS)

LCS) R3517285-1 04/05/20 02:52									
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
mg/kg	mg/kg	%	%						
0.625	0.767	123	10.0-160						
0.625	0.725	116	45.0-153						
0.125	0.109	87.2	70.0-123						
0.125	0.132	106	73.0-121						
0.125	0.111	88.8	73.0-121						
	mg/kg 0.625 0.625 0.125 0.125	0.625 0.767 0.625 0.725 0.125 0.109 0.125 0.132	mg/kg mg/kg % 0.625 0.767 123 0.625 0.725 116 0.125 0.109 87.2 0.125 0.132 106	mg/kg mg/kg % 0.625 0.767 123 10.0-160 0.625 0.725 116 45.0-153 0.125 0.109 87.2 70.0-123 0.125 0.132 106 73.0-121					

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 74 of 88

ONE LAB. NATIONWIDE.

Analyte

Bromoform

Bromomethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Chlorobenzene

Chloroethane

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

1,2-Dibromoethane Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane 1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,1-Dichloropropene

1,3-Dichloropropane

2,2-Dichloropropane

Di-isopropyl ether

Isopropylbenzene

p-Isopropyltoluene

2-Butanone (MEK) Methylene Chloride

Ethylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Hexachloro-1,3-butadiene

4-Methyl-2-pentanone (MIBK)

Methyl tert-butyl ether

trans-1,2-Dichloroethene

Dichlorodifluoromethane

1,2-Dibromo-3-Chloropropane

Chloroform

Carbon tetrachloride

Chlorodibromomethane

Volatile Organic Compounds (GC/MS) by Method 8260B

mg/kg

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.625

0.125

0.625

0.125

Spike Amount LCS Result

mg/kg

0.137

0.131

0.135

0.134

0.119

0.107

0.140

0.119

0.132

0.117

0.140

0.142

0.122

0.131

0.136

0.131

0.131

0.120

0.201

0.107

0.0891

0.126

0.111

0.123

0.164

0.119

0.125

0.144

0.135

0.109

0.131

0.134

0.115

0.139

0.131

0.730

0.111

0.773

0.118

0.0949

LCS Rec.

%

110

105

108

107

95.2

85.6

95.2

106

75.9

93.6

112

114

97.6

105

109

105

105

96.0

85.6

71.3

101

88.8

98.4

131 95.2

100

115

108

87.2

105

107

92.0

111

105

117

88.8

124

94.4

161

112

Rec. Limits

64.0-132

56.0-147

68.0-135 74.0-130

75.0-127

66.0-128

76.0-128

74.0-127

61.0-134

72.0-123

51.0-138

75.0-124

75.0-124

59.0-130

74.0-128

75.0-122

76.0-124

76.0-125

77.0-121

43.0-156

70.0-127

65.0-131

65.0-131

73.0-125

71.0-125

74.0-125

73.0-125

80.0-125

76.0-127

73.0-127

59.0-135

60.0-136

74.0-126

57.0-150

72.0-127

72.0-133

30.0-160

68.0-123

56.0-143 66.0-132 <u>J4</u>

<u>J4</u>

%

LCS Qualifier

QUALITY CONTROL SUMMARY 1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Laboratory Control Sample (LCS)

(LCS) R3517285-1 04/05/20 02:52

Τс

Ss

Cn

Sr

Qc

Gl

A

Sc

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 75 of 88

QUALITY CONTROL SUMMARY L1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Laboratory Control Sample (LCS)

(LCS) B3517285-1 04/05/20 02:52

(LCS) R3517285-1 04/05/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Naphthalene	0.125	0.108	86.4	59.0-130	
n-Propylbenzene	0.125	0.136	109	74.0-126	
Styrene	0.125	0.157	126	72.0-127	
1,1,1,2-Tetrachloroethane	0.125	0.127	102	74.0-129	
1,1,2,2-Tetrachloroethane	0.125	0.130	104	68.0-128	
Tetrachloroethene	0.125	0.124	99.2	70.0-136	
Toluene	0.125	0.116	92.8	75.0-121	
1,1,2-Trichlorotrifluoroethane	0.125	0.140	112	61.0-139	
1,2,3-Trichlorobenzene	0.125	0.120	96.0	59.0-139	
1,2,4-Trichlorobenzene	0.125	0.109	87.2	62.0-137	
1,1,1-Trichloroethane	0.125	0.119	95.2	69.0-126	
1,1,2-Trichloroethane	0.125	0.112	89.6	78.0-123	
Trichloroethene	0.125	0.135	108	76.0-126	
Trichlorofluoromethane	0.125	0.120	96.0	61.0-142	
1,2,3-Trichloropropane	0.125	0.134	107	67.0-129	
1,2,3-Trimethylbenzene	0.125	0.116	92.8	74.0-124	
1,2,4-Trimethylbenzene	0.125	0.115	92.0	70.0-126	
1,3,5-Trimethylbenzene	0.125	0.114	91.2	73.0-127	
Vinyl chloride	0.125	0.164	131	63.0-134	
Xylenes, Total	0.375	0.415	111	72.0-127	
(S) Toluene-d8			106	75.0-131	
(S) 4-Bromofluorobenzene			104	67.0-138	
(S) 1,2-Dichloroethane-d4			94.5	70.0-130	

L1205502-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1205502-08 04/(Spike Amount	Original Result		MSD Result	7285-4 04/05/ MS Rec.	20 11:18 MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
	(dry)	(ury)		(ury)			Dilation		mo quamer	mob quanter			
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Acetone	0.701	0.0711	0.643	0.550	81.5	68.3	1	10.0-160			15.6	40	
Acrylonitrile	0.701	U	0.800	0.769	114	110	1	10.0-160			4.01	40	
Benzene	0.140	U	0.151	0.158	108	113	1	10.0-149			4.35	37	
Bromobenzene	0.140	U	0.181	0.182	129	130	1	10.0-156			0.619	38	
Bromodichloromethane	0.140	U	0.148	0.151	106	108	1	10.0-143			2.25	37	
Bromoform	0.140	U	0.145	0.153	103	109	1	10.0-146			5.28	36	
Bromomethane	0.140	U	0.129	0.142	92.0	102	1	10.0-149			9.92	38	
n-Butylbenzene	0.140	U	0.190	0.204	135	146	1	10.0-160			7.41	40	
sec-Butylbenzene	0.140	U	0.187	0.204	134	146	1	10.0-159			8.60	39	
tert-Butylbenzene	0.140	U	0.167	0.183	119	130	1	10.0-156			8.97	39	
	ACCOUNT:			PRO	JECT:			SDG:		DATE/	TIME		PAGE:

Weber, Hayes & Associates - CA

2t009

SDG: L1205565 DATE/TIME: 04/10/20 18:37 PAGE: 76 of 88

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

QUALITY CONTROL SUMMARY L1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Τс

Ss

Cn

Sr

[´]Qc

GI

ΆI

Sc

L1205502-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1205502-08 04/05/20 04:37 • (MS) R3517285-3 04/05/20 10:58 • (MSD) R3517285-4 04/05/20 11:18

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Carbon tetrachloride	0.140	U	0.144	0.157	102	112	1	10.0-145			8.96	37	
Chlorobenzene	0.140	U	0.182	0.186	130	133	1	10.0-152			2.44	39	
Chlorodibromomethane	0.140	U	0.144	0.149	102	106	1	10.0-146			3.83	37	
Chloroethane	0.140	U	0.117	0.111	83.2	79.1	1	10.0-146			5.03	40	
Chloroform	0.140	U	0.140	0.137	100	97.6	1	10.0-146			2.43	37	
Chloromethane	0.140	U	0.168	0.187	120	134	1	10.0-159			10.7	37	
2-Chlorotoluene	0.140	U	0.191	0.202	136	144	1	10.0-159			5.71	38	
4-Chlorotoluene	0.140	U	0.200	0.208	142	148	1	10.0-155			3.86	39	
1,2-Dibromo-3-Chloropropane	0.140	U	0.113	0.140	80.8	100	1	10.0-151			21.2	39	
1,2-Dibromoethane	0.140	U	0.163	0.166	116	118	1	10.0-148			2.05	34	
Dibromomethane	0.140	U	0.176	0.172	126	122	1	10.0-147			2.58	35	
1,2-Dichlorobenzene	0.140	U	0.171	0.180	122	128	1	10.0-155			5.13	37	
1,3-Dichlorobenzene	0.140	U	0.171	0.182	122	130	1	10.0-153			6.37	38	
1,4-Dichlorobenzene	0.140	U	0.159	0.167	114	119	1	10.0-151			4.81	38	
Dichlorodifluoromethane	0.140	U	0.258	0.306	184	218	1	10.0-160	<u>J5</u>	<u>J5</u>	17.1	35	
1,1-Dichloroethane	0.140	U	0.151	0.151	108	108	1	10.0-147	_	_	0.000	37	
1,2-Dichloroethane	0.140	U	0.121	0.121	86.4	86.4	1	10.0-148			0.000	35	
1,1-Dichloroethene	0.140	U	0.174	0.193	124	138	1	10.0-155			10.4	37	
cis-1,2-Dichloroethene	0.140	U	0.153	0.151	109	108	1	10.0-149			0.738	37	
trans-1,2-Dichloroethene	0.140	U	0.172	0.175	122	125	1	10.0-150			1.94	37	
1,2-Dichloropropane	0.140	U	0.231	0.227	165	162	1	10.0-148	<u>J5</u>	<u>J5</u>	1.96	37	
1,1-Dichloropropene	0.140	U	0.165	0.176	118	126	1	10.0-153	_	_	6.58	35	
1,3-Dichloropropane	0.140	U	0.163	0.168	116	120	1	10.0-154			3.39	35	
cis-1,3-Dichloropropene	0.140	U	0.195	0.205	139	146	1	10.0-151			5.04	37	
trans-1,3-Dichloropropene	0.140	U	0.172	0.180	122	128	1	10.0-148			4.47	37	
2,2-Dichloropropane	0.140	U	0.113	0.131	80.8	93.6	1	10.0-138			14.7	36	
Di-isopropyl ether	0.140	U	0.177	0.186	126	133	1	10.0-147			4.94	36	
Ethylbenzene	0.140	U	0.173	0.185	123	132	1	10.0-160			6.90	38	
Hexachloro-1,3-butadiene	0.140	U	0.127	0.156	90.4	111	1	10.0-160			20.6	40	
Isopropylbenzene	0.140	U	0.172	0.181	122	129	1	10.0-155			5.10	38	
p-lsopropyltoluene	0.140	U	0.180	0.200	128	142	1	10.0-160			10.7	40	
2-Butanone (MEK)	0.701	0.0233	0.822	0.785	114	109	1	10.0-160			4.61	40	
Methylene Chloride	0.140	U	0.160	0.172	114	122	1	10.0-141			6.76	37	
4-Methyl-2-pentanone (MIBK)	0.701	U	0.898	0.901	128	128	1	10.0-160			0.374	35	
Methyl tert-butyl ether	0.140	U	0.128	0.136	91.2	96.8	1	11.0-147			5.96	35	
Naphthalene	0.140	U	0.114	0.144	81.6	102	1	10.0-160			22.6	36	
n-Propylbenzene	0.140	U	0.201	0.209	143	149	1	10.0-158			3.84	38	
Styrene	0.140	U	0.195	0.202	139	144	1	10.0-160			3.39	40	
1,1,1,2-Tetrachloroethane	0.140	U	0.146	0.153	104	109	1	10.0-149			4.51	39	
۵۵	COUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
	s & Associates -	CA			009			205565		04/10/2			77 of 88

QUALITY CONTROL SUMMARY L1205565-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

L1205502-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1205502-08 04/05/20 04:37 • (MS) R3517285-3 04/05/20 10:58 • (MSD) R3517285-4 04/05/20 11:18

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	[
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
1,1,2,2-Tetrachloroethane	0.140	U	0.174	0.183	124	130	1	10.0-160			5.03	35	l r
Tetrachloroethene	0.140	U	0.159	0.171	114	122	1	10.0-156			6.80	39	
Foluene	0.140	U	0.154	0.160	110	114	1	10.0-156			4.29	38	
I,1,2-Trichlorotrifluoroethane	0.140	U	0.183	0.214	130	153	1	10.0-160			15.8	36	
I,2,3-Trichlorobenzene	0.140	U	0.137	0.176	97.6	126	1	10.0-160			25.1	40	L
I,2,4-Trichlorobenzene	0.140	U	0.121	0.151	86.4	108	1	10.0-160			22.2	40	ſ
I,1,1-Trichloroethane	0.140	U	0.160	0.173	114	123	1	10.0-144			7.41	35	
I,1,2-Trichloroethane	0.140	U	0.145	0.144	103	102	1	10.0-160			0.778	35	
Trichloroethene	0.140	U	0.175	0.185	125	132	1	10.0-156			5.61	38	
Trichlorofluoromethane	0.140	U	0.105	0.105	75.0	74.6	1	10.0-160			0.428	40	
I,2,3-Trichloropropane	0.140	U	0.169	0.182	121	130	1	10.0-156			7.03	35	L F
I,2,3-Trimethylbenzene	0.140	U	0.158	0.169	113	121	1	10.0-160			6.85	36	
1,2,4-Trimethylbenzene	0.140	U	0.162	0.171	115	122	1	10.0-160			5.41	36	1
I,3,5-Trimethylbenzene	0.140	U	0.164	0.168	117	120	1	10.0-160			2.70	38	
/inyl chloride	0.140	U	0.235	0.267	167	190	1	10.0-160	<u>J5</u>	<u>J5</u>	13.0	37	l I
Kylenes, Total	0.421	U	0.516	0.537	123	128	1	10.0-160			4.05	38	F
(S) Toluene-d8					102	104		75.0-131					
(S) 4-Bromofluorobenzene					96.1	96.5		67.0-138					
(S) 1,2-Dichloroethane-d4					98.9	91.9		70.0-130					

PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 78 of 88

WG1455731

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1205565-28,29,30

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3517312-1 04/04/20		MP Qualifier	MB MDL	MB RDL		
Analyte	MB Result	MB Qualifier				2 Tc
	mg/kg		mg/kg	mg/kg		
Acetone	U		0.0137	0.0250		3
Acrylonitrile	U		0.00190	0.0125		ຶSs
Benzene	U		0.000400	0.00100		
Bromobenzene	U		0.00105	0.0125		⁴ Cr
Bromodichloromethane	U		0.000788	0.00250		
Bromoform	U		0.00598	0.0250		5
Bromomethane	U		0.00370	0.0125		Sr
n-Butylbenzene	U		0.00384	0.0125		
sec-Butylbenzene	U		0.00253	0.0125		6
ert-Butylbenzene	U		0.00155	0.00500		ိုင္ရင
Carbon tetrachloride	U		0.00108	0.00500		
Chlorobenzene	U		0.000573	0.00250		GI
Chlorodibromomethane	U		0.000450	0.00250		
Chloroethane	U		0.00108	0.00500		8
Chloroform	U		0.000415	0.00250		A
Chloromethane	U		0.00139	0.0125		
2-Chlorotoluene	U		0.000920	0.00250		Sc
1-Chlorotoluene	U		0.00113	0.00500		
,2-Dibromo-3-Chloropropane	U		0.00510	0.0250		
I,2-Dibromoethane	U		0.000525	0.00250		
Dibromomethane	U		0.00100	0.00500		
,2-Dichlorobenzene	U		0.00145	0.00500		
I,3-Dichlorobenzene	U		0.00170	0.00500		
1,4-Dichlorobenzene	U		0.00197	0.00500		
Dichlorodifluoromethane	U		0.000818	0.00250		
1,1-Dichloroethane	U		0.000575	0.00250		
1,2-Dichloroethane	U		0.000475	0.00250		
I,1-Dichloroethene	U		0.000500	0.00250		
cis-1,2-Dichloroethene	U		0.000690	0.00250		
rans-1,2-Dichloroethene	U		0.00143	0.00500		
I,2-Dichloropropane	U		0.00127	0.00500		
I,1-Dichloropropene	U		0.000700	0.00250		
I,3-Dichloropropane	U		0.00175	0.00500		
cis-1,3-Dichloropropene	U		0.000678	0.00250		
rans-1,3-Dichloropropene	U		0.00153	0.00500		
2,2-Dichloropropane	U		0.000793	0.00250		
Di-isopropyl ether	U		0.000350	0.00100		
Ethylbenzene	U		0.000530	0.00250		
lexachloro-1,3-butadiene	U		0.0127	0.0250		
Isopropylbenzene	U		0.000863	0.00250		
Sopropyidenzene	0		0.000000	0.00200		

Weber, Hayes & Associates - CA

PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 79 of 88

WG1455731

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3517312-1 04/04/20) 21:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
p-lsopropyltoluene	U		0.00233	0.00500	
2-Butanone (MEK)	0.0274		0.0125	0.0250	³ Ss
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.0100	0.0250	4
Methyl tert-butyl ether	U		0.000295	0.00100	C
Naphthalene	U		0.00312	0.0125	
n-Propylbenzene	U		0.00118	0.00500	⁵ Sr
Styrene	U		0.00273	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000500	0.00250	6
1,1,2,2-Tetrachloroethane	U		0.000390	0.00250	[°] Q
Tetrachloroethene	U		0.000700	0.00250	
Toluene	U		0.00125	0.00500	⁷ G
1,1,2-Trichlorotrifluoroethane	U		0.000675	0.00250	
1,2,3-Trichlorobenzene	U		0.000625	0.0125	8
1,2,4-Trichlorobenzene	U		0.00482	0.0125	A
1,1,1-Trichloroethane	U		0.000275	0.00250	
1,1,2-Trichloroethane	U		0.000883	0.00250	Sc
Trichloroethene	U		0.000400	0.00100	
Trichlorofluoromethane	U		0.000500	0.00250	
1,2,3-Trichloropropane	U		0.00510	0.0125	
1,2,3-Trimethylbenzene	U		0.00115	0.00500	
1,2,4-Trimethylbenzene	U		0.00116	0.00500	
1,3,5-Trimethylbenzene	U		0.00108	0.00500	
Vinyl chloride	U		0.000683	0.00250	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	116			75.0-131	
(S) 4-Bromofluorobenzene	90.4			67.0-138	
(S) 1,2-Dichloroethane-d4	87.4			70.0-130	

Laboratory Control Sample (LCS)

LCS) R3517312-2 04/04/20 22:09									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Acetone	0.625	0.466	74.6	10.0-160					
Acrylonitrile	0.625	0.692	111	45.0-153					
Benzene	0.125	0.112	89.6	70.0-123					
Bromobenzene	0.125	0.123	98.4	73.0-121					
Bromodichloromethane	0.125	0.108	86.4	73.0-121					

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009 SDG: L1205565 DATE/TIME: 04/10/20 18:37

PAGE: 80 of 88

QUALITY CONTROL SUMMARY

L1205565-28,29,30

Laboratory Control Sample (LCS)

-		1 - C	1.1
(LCS) R3517312-2	04/04/20	22:09	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	2
Analyte	mg/kg	mg/kg	%	%		2-
Bromoform	0.125	0.112	89.6	64.0-132		
Bromomethane	0.125	0.110	88.0	56.0-147		3
n-Butylbenzene	0.125	0.0936	74.9	68.0-135		
sec-Butylbenzene	0.125	0.106	84.8	74.0-130		4
tert-Butylbenzene	0.125	0.0992	79.4	75.0-127		
Carbon tetrachloride	0.125	0.106	84.8	66.0-128		
Chlorobenzene	0.125	0.115	92.0	76.0-128		5
Chlorodibromomethane	0.125	0.102	81.6	74.0-127		
Chloroethane	0.125	0.124	99.2	61.0-134		6
Chloroform	0.125	0.118	94.4	72.0-123		
Chloromethane	0.125	0.131	105	51.0-138		
2-Chlorotoluene	0.125	0.105	84.0	75.0-124		7
4-Chlorotoluene	0.125	0.109	87.2	75.0-124		L
1,2-Dibromo-3-Chloropropane	0.125	0.119	95.2	59.0-130		8
1,2-Dibromoethane	0.125	0.112	89.6	74.0-128		
Dibromomethane	0.125	0.106	84.8	75.0-122		
1,2-Dichlorobenzene	0.125	0.113	90.4	76.0-124		9
1,3-Dichlorobenzene	0.125	0.115	92.0	76.0-125		L
1,4-Dichlorobenzene	0.125	0.111	88.8	77.0-121		
Dichlorodifluoromethane	0.125	0.171	137	43.0-156		
1,1-Dichloroethane	0.125	0.113	90.4	70.0-127		
1,2-Dichloroethane	0.125	0.124	99.2	65.0-131		
1,1-Dichloroethene	0.125	0.114	91.2	65.0-131		
cis-1,2-Dichloroethene	0.125	0.116	92.8	73.0-125		
trans-1,2-Dichloroethene	0.125	0.122	97.6	71.0-125		
1,2-Dichloropropane	0.125	0.117	93.6	74.0-125		
1,1-Dichloropropene	0.125	0.106	84.8	73.0-125		
1,3-Dichloropropane	0.125	0.113	90.4	80.0-125		
cis-1,3-Dichloropropene	0.125	0.107	85.6	76.0-127		
trans-1,3-Dichloropropene	0.125	0.110	88.0	73.0-127		
2,2-Dichloropropane	0.125	0.103	82.4	59.0-135		
Di-isopropyl ether	0.125	0.114	91.2	60.0-136		
Ethylbenzene	0.125	0.120	96.0	74.0-126		
Hexachloro-1,3-butadiene	0.125	0.114	91.2	57.0-150		
Isopropylbenzene	0.125	0.107	85.6	72.0-127		
p-Isopropyltoluene	0.125	0.0996	79.7	72.0-133		
2-Butanone (MEK)	0.625	0.607	97.1	30.0-160		
Methylene Chloride	0.125	0.111	88.8	68.0-123		
4-Methyl-2-pentanone (MIBK)	0.625	0.589	94.2	56.0-143		
Methyl tert-butyl ether	0.125	0.118	94.4	66.0-132		

ACCOUNT: Weber, Hayes & Associates - CA PROJECT: 2t009

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 81 of 88

QUALITY CONTROL SUMMARY L1205565-28,29,30

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Laboratory Control Sample (LCS) -

		/
(LCS) R3517312-2	04/04/20 22:09	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Naphthalene	0.125	0.120	96.0	59.0-130	
n-Propylbenzene	0.125	0.106	84.8	74.0-126	
Styrene	0.125	0.105	84.0	72.0-127	
1,1,1,2-Tetrachloroethane	0.125	0.114	91.2	74.0-129	
1,1,2,2-Tetrachloroethane	0.125	0.134	107	68.0-128	
Tetrachloroethene	0.125	0.131	105	70.0-136	
Toluene	0.125	0.121	96.8	75.0-121	
1,1,2-Trichlorotrifluoroethane	0.125	0.123	98.4	61.0-139	
1,2,3-Trichlorobenzene	0.125	0.131	105	59.0-139	
1,2,4-Trichlorobenzene	0.125	0.124	99.2	62.0-137	
1,1,1-Trichloroethane	0.125	0.117	93.6	69.0-126	
1,1,2-Trichloroethane	0.125	0.120	96.0	78.0-123	
Trichloroethene	0.125	0.106	84.8	76.0-126	
Trichlorofluoromethane	0.125	0.117	93.6	61.0-142	
1,2,3-Trichloropropane	0.125	0.112	89.6	67.0-129	
1,2,3-Trimethylbenzene	0.125	0.0963	77.0	74.0-124	
1,2,4-Trimethylbenzene	0.125	0.0992	79.4	70.0-126	
1,3,5-Trimethylbenzene	0.125	0.111	88.8	73.0-127	
Vinyl chloride	0.125	0.152	122	63.0-134	
Xylenes, Total	0.375	0.337	89.9	72.0-127	
(S) Toluene-d8			113	75.0-131	
(S) 4-Bromofluorobenzene			94.4	67.0-138	
(S) 1,2-Dichloroethane-d4			95.4	70.0-130	

SDG: L1205565

DATE/TIME: 04/10/20 18:37

PAGE: 82 of 88

GLOSSARY OF TERMS

×

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Weber, Hayes & Associates - CA

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

2t009

L1205565

PAGE: 84 of 88

04/10/20 18:37

Τс Ss Cn Sr Qc Gl AI Sc

			Billing Info	mation	-		1	1		A	abets /	Contain	er / Pre	servative		Dais of Da	intody	Pageof
Weber, Hayes & Asso	ciates - C/	4	Sector Sector	s Payab tgate D	rive	ura Garcia 6	Pres							2		- E	2 ace/	Analytical*
/atsonville, CA 95076									1.1		27	200		35 2		1.1		
teport to: Ryan Nyberg			Email To: L hayes.com	mail To: Lab@weber-hayes.com;ryan@web hayes.com;harrison@weber-hayes.com				eOH5ml/Syr	1				1		R	12005 Lines Meant Juliet Phane: 615- Phane: 600-	1, TH 37	- CONT-3
Project Sescription: Capitola Rd		City/State Collected:	Santa	Cture	Please City					1	431	201	Sec.	1911	100	File: 015-758	5.5859	回相对题
hone: 831-722-3580	Client Project # 21009			Lab Pro		CA-2T009		Amb/MeO	oPres	40mIAmb-HCI			ć,			SUG # L	A	198
Elister Nylberg	Site/Facility ID 1541 CAPIT		ANTA	P.O.8	2+1	00a		40mlAm	DZCIr-N	40ml						Acctnum		HAYWCA
Collected by (signature):	Some De	5 Det	Day (Red Only)			suits Neerfeil	-	8260	soil dry weight ZozClr-NoPres	Cs 8260					The second	Pretagore PM: 110-	P76	3844
Immediately Packed on Ice N Y	Ten Day	10.0	ey (Red Only)				họ. af	OCS	N N	VOCN-				201	123	PIL		10
Sample ID	Comp/Grab	Matrix.*	Depth	1	ate	amit	Dist.	oilvocs	oil di	water					1200	SNipped) Netwo		Sample # (Seb-only)
154 1	1	GW	I	14/4	120	T	13	- 24		X		L.		1000	201			tot
GW-1 GW-2	1	GW			120	1	11	13A		X		1922	2.3	1000	(Interest			-07
	-	GW	-	1	120		11	1.50		X	1	10		SIZ I	12.2	191		-25
64-3 6W-4	1	GW			1	12.20	11	1353		×		120		1231	1000	1.1	12	=04
6W-5	1000	GW				1100	11			X		The C	1.73	en .			13	-05
6W-6	1.5.2.	GW			e		1			X				首曲二				-00
SV-5-d5		-Sew-	5	46	40		-	10		國語				NER.		HOL	D.	1. Shith
Sv-5-d15		⇒GW	15	1	1		7		2	100		(CO)			120	"Ha		
5	1	55	5				2	19		100	11	17.24		100	11.5	HOL	2	112546
54-6-115		\$\$	15		V		2			1253		151		10000	11.	HOL		1
* Matrix: 55 - Soll All - Air F - Filter GW - Groundwater B - Blostszy	Remarks:	-				ê e					pë Fla	1 	Ten Off	and have	HOCT IN	manila Hece al Pranart/1 gned/Advicat a arrive ini- t. bottles us	acti	
WW - WasteWater DW - Drinking Water DT - Other	Samples ret	med via pdEx _ Ca				Tracking #	12	17	58	66	And in case of the local division of the loc	29	16		WOA IN	ilent volume <u>II Acc</u> ern headapare cvanice Corre	interest iEticlar fl	sle
Relinquisted by : (Signature)	C	Oute: 4/2	120	Time: 3:34) In	Received by: (Sign Fed. BK					Top BI	Hurth	2	Hitestr	RAD .R.	rreen of it all	1/101	agin: Date/Time
Relinquished by: (Signature)		Dete:	-	Time:		Received by: (Sg)	nature)	-			Temp.	A	7	24	in Disky			The read lines
Relinquished by : (Signature)		Date:		Time:		Sandy		550	eF	2	Tite Ti	13/2	20 11	8120	-	04-002	8	NCF / CK

			Billing Info	mation:		100	1.11		h	nativity / C	ontainer	/ Preserv	the		Chain of Custo	ly Page_of_	1
Weber, Hayes & Asso	ciates - CA	4	Account 120 Wes			Pres									Pac	e Analytical*	
Watsonville, CA 95076			1.00						1	1		3	5	1397	1.2	PT 40 WHITE	
eport to: Ryan Nyberg			Email To: L hayes.com	ab@weber-ha uharrisos@wa	yes.com;ryan@wir ber-hayes.com	-	nt/Syr								CITRA Collastor: F Mount Juliet, TW Phone: E25-758- Phone: E20-767	171.21 1910 774 536 858 1910 774 536	
noject Assorbtion: Capitola Rd		Collected:	Santa (CRAZ	Please Ci FT_MT_C		HEL	12				110			Fex-615-706-647		
hone: 831-722-3580	Client Project # 21009			Lab Project I	WCA-2T009	13	40mlAmb/MeOH5ml/5yr	NoPres	8260 40m/Amb-HCI						SOG#	199	2
allected by (print): Eyen by berty	Site/Facility ID 1541 CAPITO		ANTA	P.O.# 2	1009		mAlm	2ozClr-N	40ml/						Acctnum: W	EBHAYWCA	é
Collected by (signature):	Rush? (.a			Quote #	194				3260			10	19	ESO	Precision: P7		
	Same Day Next Day Text Day Three Day		v (Rad Only) Inv (Rad Only) Inv (Rad Only)	Cote	Reillin Needed	No. of	OCs 8260	dry weight	water VOCs I			1000			PM: 110 - Br	lan Ford	
Sample 1D	Comp/Grate	Matrix *	Depth	Data	Time	Entre	soil vocs	p lios	water			1	8		Shipped Via: Newsite	I ampie # (lab to k)	N
55-2-d3	1 98.4	55	3	1	1	12	X	X			1641	1			1	-07	0
55-2-245	122	55	4.5'	1 2		1	X	X					No.	100		-08-	1
55-2-d12		55	12'	1.25	4		X	X	166	1.3	11.9	10		1000	1.	-04	- 1
55-3-d3	1.00	55	3'	- C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		X	X	100		100		14	1000		-10	1
SS - 3 - db		55	6	151.0	1	11	X	X	1538	1.1	201	1 10		1.34		-#	
55-3-d12		SS	12'	1. 1. 1.	1.162	1	X	X	125			1		-	1	-tc	1
611-1-83		SS	3	4/1/20			X	X	1961		1020		1	1720	-	-13	1
GW-1-17		55	7'	1			X	X	102	2				A COLOR	-	-++	4
64-1-112		55	12'				X	X	1,28		6.15	10	1	1.1.1	2	-45	1
GW-1-224	10000	55	24			N	X	X	174		1 Can			1000	in the second	-10	1
* Matrix: SS - Soit All Air F - Filter GW - Groundwater B - Boassay WW - WasteWater	Remarks:									pH Flow	2	Temp Other		COC Set COC Sig Boxt3e	istole Beccipt of Frement/Inte- put/Accurate- s arrive intact bottles used		東京教育
DW - Drinking Water OT - Other	Samples retur UPS Fe				Tracking #	12	7	5 8	360	030	12	26	~	UCA 1e	ient volume sin <u>St Auplis</u> ro Maadepare	mahla _ z _	
Relinquished by : (Signature)	4	Date: 4-2	-20	3:30pm	Received by: 154							1p	Theote	EAD HE	vation Correct, reen 40.8 98700	Li -	14
Reinquished by : (Signature)		Date		Time:	Received by: (5)	grature)	5	1.4	T.	Temp.4	and the second se	2	O		vation required by	Logn: Dete/Time	
Relinquished by : (Signature)	199	Date:		Time:	Sand			F		1/:	3/20	time:	,30	Haidt		NCF / DE)

the state

đ

Weber, Hayes & Asso 120 Westgate Drive Watsonville, CA 95076	ciates - C	A	120 Wes	mation: s Payable- La tgate Drive ville, CA 9507		Pres Osk				nalvelis / Container	(Preservation	Chain of Custoring	Analytical*
Report to: Ryan Nyberg		10		ab@weber-hay charrison@web		Lcom;ryan@weber- r-hayes.com						13065 Lehanan Ret Mount Julie, 79 30 Phone: 825-758-58	nm 19994538
Project Description: Capitola Rd		City/State Cellected	Santa C	INT	Please Gr PT_MT_C		HEM		5			Phone: 803-767-58 Fee: 615-758-5218	
None: 831-722-3580	Client Project 2t009	'		Lab Project # WEBHAYW	CA-2T009		40mlAmb/MeOH5ml/5yr	oPres	H-dm			SDE #	A200
Collected by Controls Ryson Nay Legy	Stie/Facility ID 1541 CAPIT		ANTA	P.O.# 2.1	009	3	mIAm	zClr-N	40mil4			acctnum: WE	
Collected by (signature):	Same D		Day	Quote # Date R	esalti Nerded	No.	VOCs 8260 40	dry weight ZazClr-NoPres	- VOCs 8260-40mlAmb-HCI			Template.T16 Preloge: P76 PM: 110 - Bria PB	3844
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Catta	V Hos	p lios	water			Shippord Via: Results	Lawyle # (lab cody)
GW-5-d3	10000	SS	3	4/2/20		2	X	X	134	1000			-17
6-2-3-d6		55	G				X	X	100	1.12			-18_
64-3- dh.	1 STAL	\$\$	12		all a co	11	X	X	133	1000	162		219
(mu-3-419	0.0	55	14	200	200		X	X	BIL	1000	1000		-20
64-4-43		55	3	6.1			X	X	20	SHE .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
6-1-4-06	1	SS	6				×	X	100	1. Of 8			22
6-1-4-d12	and the second	SS	12	1.0.04	4.1.1.2		X	X	108	1.84	1 Del		723
(x-1-4-223		\$\$	23	APRIL	P		A.	X	10	1.1.63		and the second	-29
SV-1-d5		SS	5	4/1/20		F	199		1993		1965	HOLD	15 345
SV-1.115	1	SS	15	4/1/24	1	1	100		10.0	1.98	A. 8	HOLD	
* Matrix: \$5 - Soil AIR - Ar / - Filter SW - Groundwater B - Bioassay WW - Waste Water	Remarks:					2		-		рН Flow	Temp	COC Seal Present Inter COC Seal Present / Intac COC Signed/Accurates Buttles arrive infact. Dirrect bottles used.	A AL
OW - Drinking Water OT Other	Samples retu UPS F	mod vla: editaCo	utior		Tracking #	1	27	58	360	392	26	Sufficient volume mert. II Aprilian Won deru bendapace.	nie y H
Refinituished by: (Signature)		Date: 4/2		3:30pm	Received by Usin Fed]	(shuter				Trip Blam Receive	NG: YEE NO HEATTERN TER	RAD SCITCH 40.3 M/NET	1_
Bellinguashed by (Signature)		Date		Time:	Received by: (Sign	ferution				Temple 440 0	18	If preservation required by L	ogin: Date/Teve
Relinquished by : (Signature)	de	Date:		Toma:	Sar	y Bland	(ol	sse.	F	1/3/20	8.30	Hold	

Weber, Hayes & Asso L20 Westgate Drive Watsonville, CA 95076	ociates - C	A	120 Wes	s Payable tgate Driv Alle, CA 9	ve .	a Garcia	Pres	A A AN	1				/ Preserv			Pace	Analytical*
ieport to: Ryan Nyberg				ab@weber- charrison@		om;ryan@wob kayes.com	201-	WSW			24					5.2005 Leitanen Rel Mason Aufez, TN 32 Phone: 625-758-58	· 273-11-1
roject Description: Capitola Rd		City/State Collected:	Salt.	Criz		Please Cir PT_MT_CI		HSM		-		20				Physics 300-767-58 Fas: 615-75d-5835	" (16.79)
hone: 831-722-3580	Client Project 2t009	*	4	Lab Project WEBHA		-27009		40mlAmb/MeOH5ml/Syr	2o2Clr-NoPres	mb-HC			2			SDG# C	A201
oliected by (print): Rugar, W	Sine/Facility ID 1541 CAPIT		ANTA	P.O. #	2+0	0 7		mAltr	Clr-N	10ml		11	- 6		Contraction of the	Acctnum: WE	BHAYWCA
allected by (signature): The Markov sometizately socked on los N_Y_X	Same (la		Rat Only)	Quote #	te Resul	ts Needed	No. of	8260	veight	VOCs 8260 40mlAmb-HCI						Template T16 Periogin: P76 P54: 110 - Bria P3	3844
Sample ID	Comp/Grab	Matrix *	Depth	Det	<)	Time	Chibis	soil vocs	soil dry v	water		1			122	Shipped Vin:	2 Dariajis # Dale seriy
GW-5-d3	1	SS	3	4/2/	120	E.A. 199	12		X			101			1215		235
64-5-26		SS	6	1000		1.12	1	×	100			-	1		The		-20
(+1-5-d12		\$5	12				14	X	X				10			1. 3. 6.	27
au-5-d27		55	27	*			11	×	X	X		0,Ell	192	11	1332	St. All	-10
SV-2-d5		55	5	4/4/3	tio I		-	民業	13	13.4			150		100	Ho4D	ESA HON
SV-2-215	and a state	55	15	1		1.5	1	200	1	131		1250	12		1231		
SV-3-15	122	35	5				1	1		100	1.1	1					FIL SC
5V-3-215	1 march	*55	15		_		1	125		1000		280E	1.1				
54-4-25		55	5	1. 1.			1	12.1		2	2.1	993	10	01			121411
50-4-115		\$5	15	V.		P	1	100						1	2.23	1	1 million
Matrix S - Soil AIR - Air I - Filter W - Groundwater B - Binassay W - Waste Water	Remarks:				-						pH Flow	_	Temp		COC Base COC Base Don't Los Cocresos	Europie Neckipi S al Freenut/Tutac med/Accupate: a arrive Intant: bottles used:	- Ki
DW - Orniong Water DT - Other	Samples return		unier		TIP	cking #	27	+S	86	03	99	26			VEA De	tent enlige seit. <u>If Applica</u> on Readsport.	hla
Rolinquished by (Signature)	-	Dute:	420	Time: 3:30y		calved by: (Sign Fred E	sature)				Trip Bla	nia Receiv	etti - Ves (HCL TBR	Maritt		varios Charlent/C rees (0.5 mB/hr)	hecked /
Relingwahed by (Signature)		Outs:		Tirrie:	Rie .	caived by (Sign	sature]				Temp: 1.0-1	119	Inttien	Generat	It preser	vation required by U	ngin: Date/Time
Relinquicked by : (Signature)		Date:		Time:	0.0	Sand	1000000		F	2	Oute:	2/20	13	30	Hold		Condition NCI / DX

Soil Vapor Analysis

_

BC Laboratories, Inc.

WEBER, HAYES & ASSOCIATES

Date of Report: 04/08/2020

Harrison Hucks

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

Client Project:Former Fairway Cleaners - 2T009bBCL Project:Air Samples - COELTBCL Work Order:2009861Invoice ID:B376815

Enclosed are the results of analyses for samples received by the laboratory on 4/3/2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Sandoval Client Service Rep

Stuart Buttram Technical Director

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

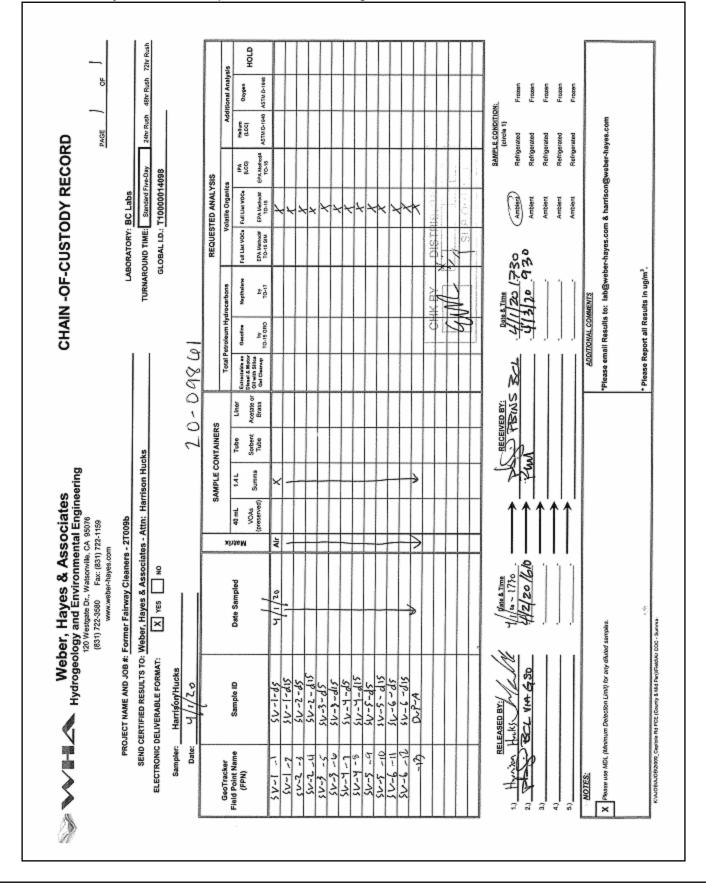


Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	
Laboratory / Client Sample Cross Reference	6
Sample Results	
2009861-01 - SV-1-d5	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) 2009861-02 - SV-1-d15	11
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	14
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	17
2009861-04 - SV-2-d15 Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	20
2009861-05 - SV-3-d5 Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	23
2009861-06 - SV-3-d15 Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	26
2009861-07 - SV-4-d5	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) 2009861-08 - SV-4-d15	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) 2009861-09 - SV-5-d5	32
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) 2009861-10 - SV-5-d15	35
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	38
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	41
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	44
2009861-13 - DUP-A Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	47
Quality Control Reports Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
Method Blank Analysis	50
Laboratory Control Sample	
Notes	
Notes and Definitions	53

Chain of Custody and Cooler Receipt Form for 2009861 Page 1 of 3

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 2009861 Page 2 of 3

BC LABORATORIES INC.	000			COOLER	RECEIPT	FORM			Pag	ge	of	
Submission #: 20-00	18 6											
f SHIPPING IN Fed Ex □ UPS □ On	FORMA											
		Hand Delivery □ Ice Chest □ None □ Box ¥ YES NO □ (Specify) 0										
Refrigerant: Ice 🗆 Blue	lce 🗆	None	\$¥	Other 🗆	Com	nents:						
Custody Seals Ice Chest	3	ontaine	5 E L L	None	A Com	ments:						
All samples received? Ye) All	samples	container	s intact?	No No	0	Descrip	tion(s) mate	ch COC?	Yes 🖉 No	0	
COC Received	Emissi	vity:		Container:	Summ	Thermon				me 4/3		
VQ YES □ NO			(A)		Ream	femp (C))	-°C	Analyst	Init Du	1 939	
SAMPLE CONTAINERS	L						NUMBERS					
		1	2	3	4	5	6	7	8	9	10	
OT PE UNPRES				l								
4oz / 8oz / 16oz PE UNPRES												
2oz Cr'												
OT INORGANIC CHEMICAL METALS												
INORGANIC CHEMICAL METALS 402 / 802	c/16oz											
PT CYANIDE							· .					
PT NITROGEN FORMS												
PT TOTAL SULFIDE												
202. NITRATE / NITRITE												
PT TOTAL ORGANIC CARBON											1	
T CHEMICAL OXYGEN DEMAND												
TA PHENOLICS												
0ml VOA VIAL TRAVEL BLANK												
Ioml VOA VIAL												
2T EPA 1664												
TODOR				· · ·						l		
ADIOLOGICAL												
ACTERIOLOGICAL												
0 ml VOA VIAL- 504												
YT EPA 508/608/8080	_+											
T EPA 515.1/8150												
T EPA 525												
T RPA 525 TRAVEL BLANK					·							
Iml RPA 547												
Iml EPA 531.1												
m EPA 548												
T EPA 549												
T EPA 8015M												
T EPA \$270	_											
a/160z/320z AMBER												
2/1602/3202 JAR												
DIL SLEEVE												
2B VIAL												
ASTIC BAG												
DLAR BAG												
RROUS IRON												
CORE												
IART KIT												
MMA CANISTER	Ĩ	4	Æ	A	A	A	A	A	A	A	A	
nments: NO TIL	on	G.D.	C			Contraction of the					السلام	
ple Numbering Completed By:	×11	1.5	~			43	20					

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1001017397
 4100 Atlas Court
 Bakersfield, CA 93308 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P.

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 2009861 Page 3 of 3

BC LABORATORIES INC.			COOLER	RECEIPT	FORM			Pag	ge L	OF Z
Submission #: 2 D- 09861			- o o kun	·	101111			rag	10	
	LATION:			1						
SHIPPING INFORM Fed Ex UPS Ontrac		d Delive			HIPPING				FREE LIC	
	(Specify	a Delive	ny Ll	Ice Ch	est⊔ er⊡(Spe		Box 🖓		YES	
	- topoun	<u> </u>		041	er Ditobe	Cli ¥1		-	W/	s
Refrigerant: Ice 🗆 Blue Ice 🗆	None	s Gy	Other 🗆	Comr	nents:					
Custody Seals Ice Chest	Containe	ers:	None	Com	ments:					
	itant? Yes			1 0011	monto.					
All samples received? Ye	I samples	container	s intact?	No No		Decerio	tion(s) mate	+ 0002	Ver Dt. No.	
	Contraction of the second				Thermon					and the second se
			o on comer.	200m	femp)		Date/In	me <u>4 3</u> ,	-
gine Into Ten	nperature:	(A)		·c /	(C)		°c	Analyst	Init Du	<u>L 93</u>
SAMPLE CONTAINERS		7			SAMPLE	NUMBERS				
OT PE UNPRES	11	12	13	4	5	6	7	8	9	10
for / Soz / 160z PE UNPRES										
los Cr*6										
T INORGANIC CHEMICAL METALS			1							
NORGANIC CHEMICAL METALS 402 / 802 / 1602										
T CYANIDE										
T NITROGEN FORMS					,					1
T TOTAL SULFIDE								-		
02. NITRATE/NITRITE										
T TOTAL ORGANIC CARBON										
T CHEMICAL OXYGEN DEMAND										
IA PHENOLICS										
mi VOA VIAL TRAVEL BLANK										
Oml VOA VIAL										
T EPA 1664		-								
T ODOR ADIOLOGICAL		-								
ACTERIOLOGICAL										
mi VOA VIAL- 504										
r BPA 508/608/8080										
F EPA 515.1/8150										
T EPA 525										
PEPA 525 TRAVEL BLANK										
ml EPA 547										
mt EPA 531.1										
EPA 548										
EPA 549					-					
EPA 8015M										
EPA 8270										
/16oz/32oz AMBER										
/ 16oz / 32oz JAR										
L SLEEVE										
VIAL										
ASTIC BAG										
DLAR BAG										
ROUS IRON										
CORE										
ART KIT										
OMA CANISTER	A	A	AT	1						

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1001017397
 4100 Atlas Court
 Bakersfield, CA 93308 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P.

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Laboratory	Client Sample Informati	on		
2009861-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-1-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	0014098 Point): SV-1-d5
2009861-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-1-d15 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Ord Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	0014098 Point): SV-1-d15
2009861-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-2-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Ord Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	0014098 Point): SV-2-d5

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Laboratory	Client Sample Information										
2009861-04	COC Number: Project Number: Sampling Location:	 Former Fairway Cleaners 	Receive Date: Sampling Date: Sample Depth:	04/03/2020 09:30 04/01/2020 00:00 Air							
2009861.05	Sampling Point: Sampled By:	SV-2-d15 Harrison Hucks of WHAW	Lab Matrix:AirSample Type:Vapor or AirDelivery Work Order:Global ID: T10000014098Location ID (FieldPoint):SV-2-d15Matrix:GSSample QC Type (SACode):CSCooler ID:Sample QC								
2009861-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-3-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	0014098 Point): SV-3-d5							
2009861-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-3-d15 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	0014098 Point): SV-3-d15							

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Laboratory	Client Sample Information										
2009861-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-4-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (S	0014098 Point): SV-4-d5							
2009861-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-4-d15 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (S	014098 Point): SV-4-d15							
2009861-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-5-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (S	014098 Point): SV-5-d5							

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Laboratory	Client Sample Information										
2009861-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-5-d15 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Souther State)	014098 Point): SV-5-d15							
2009861-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-6-d5 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	014098 Point): SV-6-d5							
2009861-12	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 Former Fairway Cleaners SV-6-d15 Harrison Hucks of WHAW	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T10000 Location ID (FieldF Matrix: GS Sample QC Type (Cooler ID:	014098 Point): SV-6-d15							

Client Sample Information

Environmental Testing Laboratory Since 1949

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

Laboratory

Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

009861-13	COC Number:		Receive Date:	04/03/2020 09:30
	Project Number:	Former Fairway Cleaners	Sampling Date:	04/01/2020 00:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	DUP-A	Lab Matrix:	Air
	Sampled By:	Harrison Hucks of WHAW	Sample Type:	Vapor or Air
			Delivery Work Ord	er:
			Global ID: T1000	014098
			Location ID (Field	Point): DUP-A
			Matrix: GS	
			Sample QC Type (SACode): CS
			Cooler ID:	

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-01	Client Sampl	e Name:	Former Fair	way Cleaners,	SV-1-d5, 4/1/2020 12	2:00:00AM, Harris	on Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		91	ug/m3	78	6.0	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	31	3.4	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	31	4.0	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	31	2.5	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	160	9.8	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	78	6.2	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	160	11	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	31	8.5	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	31	3.9	EPA-TO-15	ND	A01	1
Carbon disulfide		11	ug/m3	31	2.5	EPA-TO-15	ND	J,A01	1
Carbon tetrachloride		ND	ug/m3	78	5.9	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	78	5.1	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	31	5.0	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	78	3.9	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	31	4.5	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	31	2.8	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	78	6.7	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	78	6.4	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	78	6.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	78	9.5	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	78	8.5	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	78	5.9	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	78	4.3	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	78	3.3	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	78	3.1	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	31	3.6	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	31	3.1	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	78	4.6	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	78	3.6	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	78	4.6	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluc	proethane	ND	ug/m3	78	12	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	78	31	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	31	8.4	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-01	Client Sampl	e Name:	Former Fairv	Former Fairway Cleaners, SV-1-d5, 4/1/2020 12:00:00AM, Harrison Hucks				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	31	11	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	31	6.2	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	78	5.6	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	78	8.5	EPA-TO-15	ND	A01	1
n-Heptane		19	ug/m3	31	4.6	EPA-TO-15	ND	J,A01	1
Hexachlorobutadiene		ND	ug/m3	160	39	EPA-TO-15	ND	A01	1
Hexane		48	ug/m3	78	3.1	EPA-TO-15	ND	J,A01	1
2-Hexanone		ND	ug/m3	78	5.3	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	31	7.3	EPA-TO-15	ND	A01	1
Nethylene chloride		ND	ug/m3	160	3.7	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	31	6.5	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	78	11	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	31	5.6	EPA-TO-15	ND	A01	1
Propylene		2000	ug/m3	62	12	EPA-TO-15	ND	A01	2
Styrene		ND	ug/m3	78	5.9	EPA-TO-15	ND	A01	1
,1,2,2-Tetrachloroethane		ND	ug/m3	78	17	EPA-TO-15	ND	A01	1
etrachloroethene		ND	ug/m3	31	5.3	EPA-TO-15	ND	A01	1
Fetrahydrofuran		ND	ug/m3	31	6.5	EPA-TO-15	ND	A01	1
Foluene		28	ug/m3	31	2.9	EPA-TO-15	ND	J,A01	1
,2,4-Trichlorobenzene		ND	ug/m3	160	9.0	EPA-TO-15	ND	A01	1
,1,1-Trichloroethane		ND	ug/m3	78	4.3	EPA-TO-15	ND	A01	1
,1,2-Trichloroethane		ND	ug/m3	78	4.3	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	31	5.9	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	78	4.6	EPA-TO-15	ND	A01	1
,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	78	6.0	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	78	9.9	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	78	23	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	31	4.8	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	31	4.5	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	78	13	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	78	8.2	EPA-TO-15	ND	A01	1
Fotal Xylenes		ND	ug/m3	160	22	EPA-TO-15	ND	A01	1
I-Bromofluorobenzene (Sur	rogate)	97.3	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-01	Client Sampl	e Name:	Former Fairway Cleaners, SV-1-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
4-Bromofluorobenzene	(Surrogate)	93.4	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			2	

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	04/07/20 08:56	04/07/20 13:32	BEP	MS-A1	15.500	B074789	EPA TO-15
2	EPA-TO-15	04/07/20 08:56	04/07/20 15:01	BEP	MS-A1	31	B074789	EPA TO-15

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-02	Client Sampl	e Name:	Former Fair	way Cleaners,	SV-1-d15, 4/1/2020 1	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		36	ug/m3	79	6.2	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	32	3.5	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	32	4.1	EPA-TO-15	ND	A01	1
Benzene		23	ug/m3	32	2.5	EPA-TO-15	ND	J,A01	1
Benzyl chloride		ND	ug/m3	160	10	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	79	6.3	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	160	11	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	32	8.7	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	32	4.0	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	32	2.5	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	79	6.0	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	79	5.2	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	32	5.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	79	4.0	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1
Cyclohexane		95	ug/m3	32	2.8	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	79	6.8	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	79	6.5	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	79	6.2	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	79	9.6	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	79	8.7	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	79	6.0	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	79	4.4	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	79	3.3	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	79	3.2	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	32	3.6	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	32	3.2	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	79	4.7	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	79	3.6	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	79	4.7	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluc	roethane	ND	ug/m3	79	12	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	79	32	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	32	8.5	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2009861-02	Client Sampl	e Name:	Former Fairw	vay Cleaners,	SV-1-d15, 4/1/2020 1	2:00:00AM, Harris	son Hucks	
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol	ND	ug/m3	32	12	EPA-TO-15	ND	A01	<u>1</u>
Ethyl acetate	ND	ug/m3	32	6.3	EPA-TO-15	ND	A01	1
Ethylbenzene	ND	ug/m3	79	5.7	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene	ND	ug/m3	79	8.7	EPA-TO-15	ND	A01	1
n-Heptane	32	ug/m3	32	4.7	EPA-TO-15	ND	A01	1
Hexachlorobutadiene	ND	ug/m3	160	40	EPA-TO-15	ND	A01	1
Hexane	61	ug/m3	79	3.2	EPA-TO-15	ND	J,A01	1
2-Hexanone	ND	ug/m3	79	5.4	EPA-TO-15	ND	A01	1
Isopropyl alcohol	ND	ug/m3	32	7.4	EPA-TO-15	ND	A01	1
Methylene chloride	ND	ug/m3	160	3.8	EPA-TO-15	ND	A01	1
Methyl ethyl ketone	ND	ug/m3	32	6.6	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone	ND	ug/m3	79	11	EPA-TO-15	ND	A01	1
Methyl t-butyl ether	ND	ug/m3	32	5.7	EPA-TO-15	ND	A01	1
Propylene	ND	ug/m3	32	6.3	EPA-TO-15	ND	A01	1
Styrene	ND	ug/m3	79	6.0	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane	ND	ug/m3	79	17	EPA-TO-15	ND	A01	1
Tetrachloroethene	760	ug/m3	32	5.4	EPA-TO-15	ND	A01	1
Tetrahydrofuran	ND	ug/m3	32	6.6	EPA-TO-15	ND	A01	1
Toluene	87	ug/m3	32	3.0	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene	ND	ug/m3	160	9.2	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane	ND	ug/m3	79	4.4	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane	ND	ug/m3	79	4.4	EPA-TO-15	ND	A01	1
Trichloroethene	ND	ug/m3	32	6.0	EPA-TO-15	ND	A01	1
Trichlorofluoromethane	ND	ug/m3	79	4.7	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ug/m3	79	6.2	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene	ND	ug/m3	79	10	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene	ND	ug/m3	79	24	EPA-TO-15	ND	A01	1
Vinyl acetate	ND	ug/m3	32	4.9	EPA-TO-15	ND	A01	1
Vinyl chloride	ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1
p- & m-Xylenes	42	ug/m3	79	13	EPA-TO-15	ND	J,A01	1
o-Xylene	ND	ug/m3	79	8.4	EPA-TO-15	ND	A01	1
Total Xylenes	42	ug/m3	160	22	EPA-TO-15	ND	J,A01	1
4-Bromofluorobenzene (Surrogate)	95.7	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2009861-02	Client San	nt Sample Name: Former Fairway Cleaners, SV-1-d15, 4/1/2020 12:00:00AM, Harrison Hucks					ucks
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	04/07/20 08:56	04/07/20 14:01	I BEP	MS-A1	15.800	B074789	EPA TO-15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting parts analyted in account of each of the sclusive set of the submitting parts and the submitting parts and the sclusive set of t

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-03	Client Sampl	e Name:	Former Fairv	vay Cleaners,	SV-2-d5, 4/1/2020 12	2:00:00AM, Harriso	on Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		62	ug/m3	80	6.2	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	32	3.5	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	32	4.2	EPA-TO-15	ND	A01	1
Benzene		330	ug/m3	32	2.6	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	160	10	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	80	6.4	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	160	11	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	32	8.8	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	32	4.0	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	32	2.6	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	80	6.1	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	80	5.3	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	32	5.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	80	4.0	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1
Cyclohexane		99	ug/m3	32	2.9	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	80	6.9	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	80	6.6	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	80	6.2	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	80	9.8	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	80	8.8	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	80	6.1	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	80	3.4	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	80	3.2	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	32	3.7	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	32	3.2	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	80	3.7	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluc	roethane	ND	ug/m3	80	12	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	80	32	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	32	8.6	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-03	Client Sampl	e Name:	Name: Former Fairway Cleaners, SV-2-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Booult	Unite	PQL	MDL	Mothed	MB	Lab		
Ethanol		Result 810	Units ug/m3	32	12	Method EPA-TO-15	Bias ND	Quals A01	<u>Run #</u> 1	
Ethyl acetate		ND	ug/m3	32	6.4	EPA-TO-15	ND	A01	1	
Ethylbenzene		190	ug/m3	80	5.8	EPA-TO-15	ND	A01	1	
1-Ethyl-4-methylbenzene		72	ug/m3	80	8.8	EPA-TO-15	ND	J,A01	1	
n-Heptane		490	ug/m3	32	4.8	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND	ug/m3	160	40	EPA-TO-15	ND	A01	1	
Hexane		150	ug/m3	80	3.2	EPA-TO-15	ND	A01	1	
2-Hexanone		ND	ug/m3	80	5.4	EPA-TO-15	ND	A01	1	
Isopropyl alcohol		ND	ug/m3	32	7.5	EPA-TO-15	ND	A01	1	
Methylene chloride		ND	ug/m3	160	3.8	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND	ug/m3	32	6.7	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND	ug/m3	80	11	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND	ug/m3	32	5.8	EPA-TO-15	ND	A01	1	
Propylene		360	ug/m3	32	6.4	EPA-TO-15	ND	A01	1	
Styrene		ND	ug/m3	80	6.1	EPA-TO-15	ND	A01	1	
1,1,2,2-Tetrachloroethane		ND	ug/m3	80	18	EPA-TO-15	ND	A01	1	
Tetrachloroethene		130	ug/m3	32	5.4	EPA-TO-15	ND	A01	1	
Tetrahydrofuran		ND	ug/m3	32	6.7	EPA-TO-15	ND	A01	1	
Toluene		1900	ug/m3	32	3.0	EPA-TO-15	ND	A01	1	
1,2,4-Trichlorobenzene		ND	ug/m3	160	9.3	EPA-TO-15	ND	A01	1	
1,1,1-Trichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1	
1,1,2-Trichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1	
Trichloroethene		ND	ug/m3	32	6.1	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1	
1,1,2-Trichloro-1,2,2-trifluoro	bethane	ND	ug/m3	80	6.2	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		71	ug/m3	80	10	EPA-TO-15	ND	J,A01	1	
1,3,5-Trimethylbenzene		34	ug/m3	80	24	EPA-TO-15	ND	J,A01	1	
Vinyl acetate		ND	ug/m3	32	5.0	EPA-TO-15	ND	A01	1	
Vinyl chloride		ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1	
p- & m-Xylenes		680	ug/m3	80	13	EPA-TO-15	ND	A01	1	
o-Xylene		200	ug/m3	80	8.5	EPA-TO-15	ND	A01	1	
Total Xylenes		870	ug/m3	160	22	EPA-TO-15	ND	A01	1	
4-Bromofluorobenzene (Sur	rogate)	97.5	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-03	nple Name:	Former Fairway Cleaners, SV-2-d5, 4/1/2020 12:00:00AM, Harrison Hucks					
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	04/07/20 08:56	04/07/20 14:31		MS-A1	16	B074789	EPA TO-15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting parts analyted in account of each of the sclusive set of the submitting parts and the submitting parts and the sclusive set of t

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-04	Client Sample Name:		Former Fairway Cleaners, SV-2-d15, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Acetone		ND	ug/m3	760	59	EPA-TO-15	ND	A01	1	
Acrylonitrile		ND	ug/m3	300	33	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	300	39	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	300	24	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	1500	95	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	760	60	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	1500	110	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	300	83	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	300	38	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	300	24	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		ND	ug/m3	760	57	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	760	50	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	300	48	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	760	38	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	300	44	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	300	27	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	760	65	EPA-TO-15	ND	A01	1	
I,2-Dibromoethane		ND	ug/m3	760	62	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	760	59	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	760	92	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	760	83	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		ND	ug/m3	760	57	EPA-TO-15	ND	A01	1	
1,1-Dichloroethane		ND	ug/m3	760	42	EPA-TO-15	ND	A01	1	
,2-Dichloroethane		ND	ug/m3	760	32	EPA-TO-15	ND	A01	1	
I,1-Dichloroethene		ND	ug/m3	760	30	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	300	35	EPA-TO-15	ND	A01	1	
rans-1,2-Dichloroethene		ND	ug/m3	300	30	EPA-TO-15	ND	A01	1	
1,2-Dichloropropane		ND	ug/m3	760	45	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	760	35	EPA-TO-15	ND	A01	1	
rans-1,3-Dichloropropene		ND	ug/m3	760	45	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluc	oroethane	ND	ug/m3	760	120	EPA-TO-15	ND	A01	1	
I,1-Difluoroethane		ND	ug/m3	760	300	EPA-TO-15	ND	A01	1	
1,4-Dioxane		ND	ug/m3	300	82	EPA-TO-15	ND	A01	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-04	Client Sample Name:		Former Fairway Cleaners, SV-2-d15, 4/1/2020 12:00:00AM, Harrison Hucks					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	300	110	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	300	60	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	760	54	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	760	83	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	300	45	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	1500	380	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	760	30	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	760	51	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	300	71	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	1500	36	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	300	63	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	760	110	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	300	54	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	300	60	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	760	57	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	760	170	EPA-TO-15	ND	A01	1
etrachloroethene		38000	ug/m3	300	51	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	300	63	EPA-TO-15	ND	A01	1
Foluene		170	ug/m3	300	29	EPA-TO-15	ND	J,A01	1
,2,4-Trichlorobenzene		ND	ug/m3	1500	88	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	760	42	EPA-TO-15	ND	A01	1
,1,2-Trichloroethane		ND	ug/m3	760	42	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	300	57	EPA-TO-15	ND	A01	1
Frichlorofluoromethane		ND	ug/m3	760	45	EPA-TO-15	ND	A01	1
I,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	760	59	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	760	97	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	760	230	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	300	47	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	300	44	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	760	130	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	760	80	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	1500	210	EPA-TO-15	ND	A01	1
I-Bromofluorobenzene (Surr	ogate)	104	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55 Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2009861-04	Client San	ple Name:	Former Fairway C	eaners, SV-2-d15, 4	/1/2020 12:00:00AM, Harrison Hucks			
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID		
Kull#	Methou	Flep Date	Date/Time	Analyst	mstrument	Dilution	Batchild		
1	EPA-TO-15	04/07/20 08:56	04/07/20 17:32	BEP	MS-A1	151	B074789	EPA TO-15	

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-05	Client Sampl	e Name:	Former Fairway Cleaners, SV-3-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Dun #	
Acetone		120	ug/m3	75	5.8	EPA-TO-15	ND	A01	Run # 1	
Acrylonitrile		ND	ug/m3	30	3.3	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	30	3.9	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	30	2.4	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	150	9.4	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	75	6.0	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	150	11	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	30	8.2	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	30	3.8	EPA-TO-15	ND	A01	1	
Carbon disulfide		21	ug/m3	30	2.4	EPA-TO-15	ND	J,A01	1	
Carbon tetrachloride		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	75	5.0	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	30	4.8	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	75	3.8	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	30	2.7	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	75	6.4	EPA-TO-15	ND	A01	1	
1,2-Dibromoethane		ND	ug/m3	75	6.2	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	75	9.2	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	75	8.2	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1	
1,1-Dichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1	
1,2-Dichloroethane		ND	ug/m3	75	3.2	EPA-TO-15	ND	A01	1	
1,1-Dichloroethene		ND	ug/m3	75	3.0	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		21	ug/m3	30	3.4	EPA-TO-15	ND	J,A01	1	
trans-1,2-Dichloroethene		ND	ug/m3	30	3.0	EPA-TO-15	ND	A01	1	
1,2-Dichloropropane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	75	3.4	EPA-TO-15	ND	A01	1	
trans-1,3-Dichloropropene		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	75	12	EPA-TO-15	ND	A01	1	
1,1-Difluoroethane		ND	ug/m3	75	30	EPA-TO-15	ND	A01	1	
1,4-Dioxane		ND	ug/m3	30	8.1	EPA-TO-15	ND	A01	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-05	Client Sampl	e Name:	Former Fairway Cleaners, SV-3-d5, 4/1/2020 12:00:00AM, Harrison Hucks					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	30	11	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	30	6.0	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	75	5.4	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	75	8.2	EPA-TO-15	ND	A01	1
n-Heptane		15	ug/m3	30	4.5	EPA-TO-15	ND	J,A01	1
Hexachlorobutadiene		ND	ug/m3	150	38	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	75	3.0	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	75	5.1	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	30	7.0	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	150	3.6	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	75	10	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	30	5.4	EPA-TO-15	ND	A01	1
Propylene		400	ug/m3	30	6.0	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	75	16	EPA-TO-15	ND	A01	1
fetrachloroethene		250	ug/m3	30	5.1	EPA-TO-15	ND	A01	1
Fetrahydrofuran		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1
Foluene		82	ug/m3	30	2.8	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	150	8.7	EPA-TO-15	ND	A01	1
I,1,1-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	30	5.7	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1
I,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	75	9.6	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	75	22	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	30	4.6	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	75	12	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	75	8.0	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	150	21	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surr	ogate)	95.5	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55 Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-05	Client San	nple Name:	Former Fairway Cl	leaners, SV-3-d5, 4/1	cks		
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	04/07/20 08:56	04/07/20 15:29) BEP	MS-A1	15	B074789	EPA TO-15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-06	Client Sampl	e Name:	Former Fairway Cleaners, SV-3-d15, 4/1/2020 12:00:00AM, Harrison Hucks					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	720	56	EPA-TO-15	ND	A01	<u>1</u>
Acrylonitrile		ND	ug/m3	290	32	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	290	37	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	290	23	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	1400	91	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	720	58	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	1400	100	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	290	79	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	290	36	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	290	23	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	720	55	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	720	48	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	290	46	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	720	36	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	290	42	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	290	26	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	720	62	EPA-TO-15	ND	A01	1
,2-Dibromoethane		ND	ug/m3	720	59	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	720	56	EPA-TO-15	ND	A01	1
,3-Dichlorobenzene		ND	ug/m3	720	88	EPA-TO-15	ND	A01	1
,4-Dichlorobenzene		ND	ug/m3	720	79	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	720	55	EPA-TO-15	ND	A01	1
,1-Dichloroethane		ND	ug/m3	720	40	EPA-TO-15	ND	A01	1
,2-Dichloroethane		ND	ug/m3	720	30	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	720	29	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	290	33	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	290	29	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	720	43	EPA-TO-15	ND	A01	1
is-1,3-Dichloropropene		ND	ug/m3	720	33	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	720	43	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	720	110	EPA-TO-15	ND	A01	1
I,1-Difluoroethane		ND	ug/m3	720	290	EPA-TO-15	ND	A01	1
I,4-Dioxane		ND	ug/m3	290	78	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-06	Client Sampl	e Name:	Former Fairway Cleaners, SV-3-d15, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Ethanol		ND	ug/m3	290	110	EPA-TO-15	ND	A01	1	
Ethyl acetate		ND	ug/m3	290	58	EPA-TO-15	ND	A01	1	
Ethylbenzene		ND	ug/m3	720	52	EPA-TO-15	ND	A01	1	
1-Ethyl-4-methylbenzene		ND	ug/m3	720	79	EPA-TO-15	ND	A01	1	
n-Heptane		ND	ug/m3	290	43	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND	ug/m3	1400	360	EPA-TO-15	ND	A01	1	
Hexane		470	ug/m3	720	29	EPA-TO-15	ND	J,A01	1	
2-Hexanone		ND	ug/m3	720	49	EPA-TO-15	ND	A01	1	
sopropyl alcohol		ND	ug/m3	290	68	EPA-TO-15	ND	A01	1	
Methylene chloride		ND	ug/m3	1400	35	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND	ug/m3	290	60	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND	ug/m3	720	100	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND	ug/m3	290	52	EPA-TO-15	ND	A01	1	
Propylene		150	ug/m3	290	58	EPA-TO-15	ND	J,A01	1	
Styrene		ND	ug/m3	720	55	EPA-TO-15	ND	A01	1	
,1,2,2-Tetrachloroethane		ND	ug/m3	720	160	EPA-TO-15	ND	A01	1	
etrachloroethene		110000	ug/m3	2900	490	EPA-TO-15	ND	A01	2	
Tetrahydrofuran		ND	ug/m3	290	60	EPA-TO-15	ND	A01	1	
Toluene		ND	ug/m3	290	27	EPA-TO-15	ND	A01	1	
,2,4-Trichlorobenzene		ND	ug/m3	1400	84	EPA-TO-15	ND	A01	1	
I,1,1-Trichloroethane		ND	ug/m3	720	40	EPA-TO-15	ND	A01	1	
,1,2-Trichloroethane		ND	ug/m3	720	40	EPA-TO-15	ND	A01	1	
richloroethene		ND	ug/m3	290	55	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		ND	ug/m3	720	43	EPA-TO-15	ND	A01	1	
,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	720	56	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		ND	ug/m3	720	92	EPA-TO-15	ND	A01	1	
1,3,5-Trimethylbenzene		ND	ug/m3	720	220	EPA-TO-15	ND	A01	1	
/inyl acetate		ND	ug/m3	290	45	EPA-TO-15	ND	A01	1	
/inyl chloride		ND	ug/m3	290	42	EPA-TO-15	ND	A01	1	
o- & m-Xylenes		ND	ug/m3	720	120	EPA-TO-15	ND	A01	1	
o-Xylene		ND	ug/m3	720	76	EPA-TO-15	ND	A01	1	
Total Xylenes		ND	ug/m3	1400	200	EPA-TO-15	ND	A01	1	
I-Bromofluorobenzene (Sur	rogate)	106	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-06	Client Sampl	e Name:	Former Fair	way Cleaners,	SV-3-d15, 4/1/2020	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
4-Bromofluorobenzene	e (Surrogate)	96.2	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			2

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	04/07/20 08:56	04/07/20 18:07	BEP	MS-A1	144	B074789	EPA TO-15
2	EPA-TO-15	04/07/20 08:56	04/07/20 21:21	BEP	MS-A1	1440	B074789	EPA TO-15

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-07	Client Sampl	e Name:	Former Fairway Cleaners, SV-4-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Acetone		150	ug/m3	80	6.2	EPA-TO-15	ND	A01	1	
Acrylonitrile		ND	ug/m3	32	3.5	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	32	4.1	EPA-TO-15	ND	A01	1	
Benzene		150	ug/m3	32	2.5	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	160	10	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	80	6.4	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	160	11	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	32	8.7	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	32	4.0	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	32	2.5	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		ND	ug/m3	80	6.0	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	80	5.2	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	32	5.1	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	80	4.0	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	32	2.9	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	80	6.8	EPA-TO-15	ND	A01	1	
1,2-Dibromoethane		ND	ug/m3	80	6.5	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	80	6.2	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	80	9.7	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	80	8.7	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		ND	ug/m3	80	6.0	EPA-TO-15	ND	A01	1	
1,1-Dichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1	
1,2-Dichloroethane		ND	ug/m3	80	3.3	EPA-TO-15	ND	A01	1	
1,1-Dichloroethene		ND	ug/m3	80	3.2	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	32	3.7	EPA-TO-15	ND	A01	1	
trans-1,2-Dichloroethene		ND	ug/m3	32	3.2	EPA-TO-15	ND	A01	1	
1,2-Dichloropropane		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	80	3.7	EPA-TO-15	ND	A01	1	
trans-1,3-Dichloropropene		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluc	roethane	ND	ug/m3	80	12	EPA-TO-15	ND	A01	1	
1,1-Difluoroethane		ND	ug/m3	80	32	EPA-TO-15	ND	A01	1	
1,4-Dioxane		ND	ug/m3	32	8.6	EPA-TO-15	ND	A01	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-07	Client Sampl	e Name:	Former Fairway Cleaners, SV-4-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Ethanol		63	ug/m3	32	12	EPA-TO-15	ND	A01	1	
Ethyl acetate		ND	ug/m3	32	6.4	EPA-TO-15	ND	A01	1	
Ethylbenzene		81	ug/m3	80	5.7	EPA-TO-15	ND	A01	1	
1-Ethyl-4-methylbenzene		28	ug/m3	80	8.7	EPA-TO-15	ND	J,A01	1	
n-Heptane		180	ug/m3	32	4.8	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND	ug/m3	160	40	EPA-TO-15	ND	A01	1	
Hexane		79	ug/m3	80	3.2	EPA-TO-15	ND	J,A01	1	
2-Hexanone		ND	ug/m3	80	5.4	EPA-TO-15	ND	A01	1	
Isopropyl alcohol		ND	ug/m3	32	7.5	EPA-TO-15	ND	A01	1	
Methylene chloride		ND	ug/m3	160	3.8	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND	ug/m3	32	6.7	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND	ug/m3	80	11	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND	ug/m3	32	5.7	EPA-TO-15	ND	A01	1	
Propylene		2800	ug/m3	64	13	EPA-TO-15	ND	A01	2	
Styrene		ND	ug/m3	80	6.0	EPA-TO-15	ND	A01	1	
1,1,2,2-Tetrachloroethane		ND	ug/m3	80	17	EPA-TO-15	ND	A01	1	
Tetrachloroethene		130	ug/m3	32	5.4	EPA-TO-15	ND	A01	1	
Tetrahydrofuran		ND	ug/m3	32	6.7	EPA-TO-15	ND	A01	1	
Toluene		810	ug/m3	32	3.0	EPA-TO-15	ND	A01	1	
1,2,4-Trichlorobenzene		ND	ug/m3	160	9.2	EPA-TO-15	ND	A01	1	
1,1,1-Trichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1	
1,1,2-Trichloroethane		ND	ug/m3	80	4.5	EPA-TO-15	ND	A01	1	
Trichloroethene		ND	ug/m3	32	6.0	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		ND	ug/m3	80	4.8	EPA-TO-15	ND	A01	1	
1,1,2-Trichloro-1,2,2-trifluor	pethane	ND	ug/m3	80	6.2	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		26	ug/m3	80	10	EPA-TO-15	ND	J,A01	1	
1,3,5-Trimethylbenzene		ND	ug/m3	80	24	EPA-TO-15	ND	A01	1	
Vinyl acetate		ND	ug/m3	32	4.9	EPA-TO-15	ND	A01	1	
Vinyl chloride		ND	ug/m3	32	4.6	EPA-TO-15	ND	A01	1	
p- & m-Xylenes		280	ug/m3	80	13	EPA-TO-15	ND	A01	1	
o-Xylene		83	ug/m3	80	8.4	EPA-TO-15	ND	A01	1	
Total Xylenes		370	ug/m3	160	22	EPA-TO-15	ND	A01	1	
4-Bromofluorobenzene (Su	rogate)	97.8	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-07	Client Sampl	e Name:	Former Fair	way Cleaners,	SV-4-d5, 4/1/2020	12:00:00AM, Harriso	on Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
4-Bromofluorobenzene	e (Surrogate)	104	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			2

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	04/07/20 08:56	04/07/20 15:58	BEP	MS-A1	15.900	B074789	EPA TO-15
2	EPA-TO-15	04/07/20 08:56	04/07/20 22:55	BEP	MS-A1	31.800	B074789	EPA TO-15

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-08	Client Sampl	e Name:	Former Fairw					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	780	61	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	310	35	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	310	41	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	310	25	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	1600	99	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	780	63	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	1600	110	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	310	86	EPA-TO-15	ND	A01	1
I,3-Butadiene		ND	ug/m3	310	39	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	310	25	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	780	60	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	780	52	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	310	50	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	780	39	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	310	46	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	310	28	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	780	68	EPA-TO-15	ND	A01	1
,2-Dibromoethane		ND	ug/m3	780	64	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	780	61	EPA-TO-15	ND	A01	1
,3-Dichlorobenzene		ND	ug/m3	780	96	EPA-TO-15	ND	A01	1
,4-Dichlorobenzene		ND	ug/m3	780	86	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	780	60	EPA-TO-15	ND	A01	1
,1-Dichloroethane		ND	ug/m3	780	44	EPA-TO-15	ND	A01	1
,2-Dichloroethane		ND	ug/m3	780	33	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	780	31	EPA-TO-15	ND	A01	1
sis-1,2-Dichloroethene		ND	ug/m3	310	36	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	310	31	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	780	47	EPA-TO-15	ND	A01	1
sis-1,3-Dichloropropene		ND	ug/m3	780	36	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	780	47	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	780	120	EPA-TO-15	ND	A01	1
,1-Difluoroethane		ND	ug/m3	780	310	EPA-TO-15	ND	A01	1
,4-Dioxane		ND	ug/m3	310	85	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-08	Client Sampl	e Name:	Former Fairw	vay Cleaners,	SV-4-d15, 4/1/2020	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	310	120	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	310	63	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	780	57	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	780	86	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	310	47	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	1600	390	EPA-TO-15	ND	A01	1
Hexane		770	ug/m3	780	31	EPA-TO-15	ND	J,A01	1
2-Hexanone		ND	ug/m3	780	53	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	310	74	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	1600	38	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	310	66	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	780	110	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	310	57	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	310	63	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	780	60	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	780	170	EPA-TO-15	ND	A01	1
Tetrachloroethene		43000	ug/m3	310	53	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	310	66	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	310	30	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	1600	91	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	780	44	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	780	44	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	310	60	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	780	47	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	oethane	ND	ug/m3	780	61	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	780	100	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	780	240	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	310	49	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	310	46	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	780	130	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	780	83	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	1600	220	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Sur	rogate)	108	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55 Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2009861-08	Client San	ple Name:	ple Name: Former Fairway Cleaners, SV-4-d15, 4/1/2020 12:00:00AM, Harrison Hucks						
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID			
Kull#	Methou	Flep Date	Date/ Time	Analyst	Instrument	Dilution	Datch ID			
1	EPA-TO-15	04/07/20 08:56	04/07/20 18:43	BEP	MS-A1	157	B074789	EPA TO-15		

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	09861-09	Client Sampl	e Name:	Former Fairway Cleaners, SV-5-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Acetone		ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1	
Acrylonitrile		ND	ug/m3	30	3.3	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	30	3.9	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	30	2.4	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	150	9.4	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	75	6.0	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	150	11	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	30	8.2	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	30	3.8	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	30	2.4	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	75	5.0	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	30	4.8	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	75	3.8	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	30	2.7	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	75	6.4	EPA-TO-15	ND	A01	1	
1,2-Dibromoethane		ND	ug/m3	75	6.2	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	75	9.2	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	75	8.2	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1	
I,1-Dichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1	
1,2-Dichloroethane		ND	ug/m3	75	3.2	EPA-TO-15	ND	A01	1	
1,1-Dichloroethene		ND	ug/m3	75	3.0	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	30	3.4	EPA-TO-15	ND	A01	1	
rans-1,2-Dichloroethene		ND	ug/m3	30	3.0	EPA-TO-15	ND	A01	1	
,2-Dichloropropane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	75	3.4	EPA-TO-15	ND	A01	1	
rans-1,3-Dichloropropene		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	75	12	EPA-TO-15	ND	A01	1	
1,1-Difluoroethane		ND	ug/m3	75	30	EPA-TO-15	ND	A01	1	
1,4-Dioxane		ND	ug/m3	30	8.1	EPA-TO-15	ND	A01	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-09	Client Sampl	Former Fairway Cleaners, SV-5-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	30	11	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	30	6.0	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	75	5.4	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	75	8.2	EPA-TO-15	ND	A01	1
n-Heptane		16	ug/m3	30	4.5	EPA-TO-15	ND	J,A01	1
Hexachlorobutadiene		ND	ug/m3	150	38	EPA-TO-15	ND	A01	1
Hexane		46	ug/m3	75	3.0	EPA-TO-15	ND	J,A01	1
2-Hexanone		ND	ug/m3	75	5.1	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	30	7.0	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	150	3.6	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	75	10	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	30	5.4	EPA-TO-15	ND	A01	1
Propylene		230	ug/m3	30	6.0	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	75	16	EPA-TO-15	ND	A01	1
etrachloroethene		100	ug/m3	30	5.1	EPA-TO-15	ND	A01	1
Fetrahydrofuran		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1
Foluene		18	ug/m3	30	2.8	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	150	8.7	EPA-TO-15	ND	A01	1
I,1,1-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	30	5.7	EPA-TO-15	ND	A01	1
Frichlorofluoromethane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	75	9.6	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	75	22	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	30	4.6	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	75	12	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	75	8.0	EPA-TO-15	ND	A01	1
Fotal Xylenes		ND	ug/m3	150	21	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Sur	ogate)	93.6	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55 Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-09	Client Sam	Client Sample Name: Former Fairway Cleaners, SV-5-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15	04/07/20 08:56	04/07/20 16:28	,	MS-A1	15	B074789	EPA TO-15	

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-10	Client Sampl	e Name:	Former Fairv	vay Cleaners,	SV-5-d15, 4/1/2020	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	770	60	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	310	34	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	310	40	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	310	25	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	1500	97	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	770	62	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	1500	110	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	310	85	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	310	38	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	310	25	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	770	59	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	770	51	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	310	49	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	770	38	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	310	45	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	310	28	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	770	66	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	770	63	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	770	60	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	770	94	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	770	85	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	770	59	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	770	43	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	770	32	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	770	31	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	310	35	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	310	31	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	770	46	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	770	35	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	770	46	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluc	roethane	ND	ug/m3	770	120	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	770	310	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	310	83	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-10	Client Sampl	e Name:	Former Fairv	vay Cleaners,	SV-5-d15, 4/1/2020 1	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	310	110	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	310	62	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	770	55	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	770	85	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	310	46	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	1500	380	EPA-TO-15	ND	A01	1
Hexane		910	ug/m3	770	31	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	770	52	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	310	72	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	1500	37	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	310	65	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	770	110	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	310	55	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	310	62	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	770	59	EPA-TO-15	ND	A01	1
,1,2,2-Tetrachloroethane		ND	ug/m3	770	170	EPA-TO-15	ND	A01	1
Fetrachloroethene		64000	ug/m3	3100	520	EPA-TO-15	ND	A01	2
Fetrahydrofuran		ND	ug/m3	310	65	EPA-TO-15	ND	A01	1
Toluene		170	ug/m3	310	29	EPA-TO-15	ND	J,A01	1
,2,4-Trichlorobenzene		ND	ug/m3	1500	89	EPA-TO-15	ND	A01	1
I,1,1-Trichloroethane		ND	ug/m3	770	43	EPA-TO-15	ND	A01	1
,1,2-Trichloroethane		ND	ug/m3	770	43	EPA-TO-15	ND	A01	1
Frichloroethene		ND	ug/m3	310	59	EPA-TO-15	ND	A01	1
Frichlorofluoromethane		ND	ug/m3	770	46	EPA-TO-15	ND	A01	1
I,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	770	60	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	770	99	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	770	230	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	310	48	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	310	45	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	770	130	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	770	82	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	1500	220	EPA-TO-15	ND	A01	1
I-Bromofluorobenzene (Surr	ogate)	108	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-10	Client Sampl	e Name:	Former Fair	Former Fairway Cleaners, SV-5-d15, 4/1/2020 12:00:00AM, Harrison Hucks						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
4-Bromofluorobenzene	e (Surrogate)	100	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			2		

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method		
1	EPA-TO-15	04/07/20 08:56	04/07/20 19:18	BEP	MS-A1	154	B074789	EPA TO-15		
2	EPA-TO-15	04/07/20 08:56	04/07/20 21:50	BEP	MS-A1	1540	B074789	EPA TO-15		

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-11	Client Sampl	e Name:	Former Fairv	on Hucks				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	76	6.0	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	31	3.4	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	31	4.0	EPA-TO-15	ND	A01	1
Benzene		10	ug/m3	31	2.4	EPA-TO-15	ND	J,A01	1
Benzyl chloride		ND	ug/m3	150	9.6	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	76	6.1	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	150	11	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	31	8.4	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	31	3.8	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	31	2.4	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	76	5.8	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	76	5.0	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	31	4.9	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	76	3.8	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	31	4.4	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	31	2.8	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	76	6.6	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	76	6.3	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	76	6.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	76	9.3	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	76	8.4	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	76	5.8	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	76	4.3	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	76	3.2	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	76	3.1	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		170	ug/m3	31	3.5	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	31	3.1	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	76	4.6	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	76	3.5	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	76	4.6	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluc	roethane	ND	ug/m3	76	12	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	76	31	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	31	8.3	EPA-TO-15	ND	A01	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-11	Client Sampl	e Name:	Former Fairway Cleaners, SV-6-d5, 4/1/2020 12:00:00AM, Harrison Hucks					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ethanol		ND	ug/m3	31	11	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	31	6.1	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	76	5.5	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	76	8.4	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	31	4.6	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	150	38	EPA-TO-15	ND	A01	1
Hexane		41	ug/m3	76	3.1	EPA-TO-15	ND	J,A01	1
2-Hexanone		ND	ug/m3	76	5.2	EPA-TO-15	ND	A01	1
sopropyl alcohol		ND	ug/m3	31	7.2	EPA-TO-15	ND	A01	1
Nethylene chloride		ND	ug/m3	150	3.7	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	31	6.4	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	76	11	EPA-TO-15	ND	A01	1
Nethyl t-butyl ether		ND	ug/m3	31	5.5	EPA-TO-15	ND	A01	1
Propylene		220	ug/m3	31	6.1	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	76	5.8	EPA-TO-15	ND	A01	1
,1,2,2-Tetrachloroethane		ND	ug/m3	76	17	EPA-TO-15	ND	A01	1
etrachloroethene		1400	ug/m3	31	5.2	EPA-TO-15	ND	A01	1
Fetrahydrofuran		ND	ug/m3	31	6.4	EPA-TO-15	ND	A01	1
Toluene		37	ug/m3	31	2.9	EPA-TO-15	ND	A01	1
,2,4-Trichlorobenzene		ND	ug/m3	150	8.9	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	76	4.3	EPA-TO-15	ND	A01	1
,1,2-Trichloroethane		ND	ug/m3	76	4.3	EPA-TO-15	ND	A01	1
Trichloroethene		120	ug/m3	31	5.8	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	76	4.6	EPA-TO-15	ND	A01	1
,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	76	6.0	EPA-TO-15	ND	A01	1
,2,4-Trimethylbenzene		ND	ug/m3	76	9.8	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	76	23	EPA-TO-15	ND	A01	1
/inyl acetate		ND	ug/m3	31	4.7	EPA-TO-15	ND	A01	1
/inyl chloride		ND	ug/m3	31	4.4	EPA-TO-15	ND	A01	1
o- & m-Xylenes		ND	ug/m3	76	13	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	76	8.1	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	150	21	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surr	oqate)	93.4	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-11	Client Sam	Client Sample Name: Former Fairway Cleaners, SV-6-d5, 4/1/2020 12:00:00AM, Harrison Hucks						
Run #	Method	Prep Date	Run Date/Time	Analvst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15	04/07/20 08:56	04/07/20 16:57	,	MS-A1	15.300	B074789	EPA TO-15	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting parts analyted in account of each of the sclusive set of the submitting parts and the submitting parts and the sclusive set of t

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 20	009861-12	Client Sampl	e Name:	Former Fairway Cleaners, SV-6-d15, 4/1/2020 12:00:00AM, Harrison Hucks							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Acetone		ND	ug/m3	740	58	EPA-TO-15	ND	A01	1		
Acrylonitrile		ND	ug/m3	300	33	EPA-TO-15	ND	A01	1		
Allyl chloride		ND	ug/m3	300	38	EPA-TO-15	ND	A01	1		
Benzene		ND	ug/m3	300	24	EPA-TO-15	ND	A01	1		
Benzyl chloride		ND	ug/m3	1500	93	EPA-TO-15	ND	A01	1		
Bromodichloromethane		ND	ug/m3	740	59	EPA-TO-15	ND	A01	1		
Bromoform		ND	ug/m3	1500	110	EPA-TO-15	ND	A01	1		
Bromomethane		ND	ug/m3	300	81	EPA-TO-15	ND	A01	1		
,3-Butadiene		ND	ug/m3	300	37	EPA-TO-15	ND	A01	1		
Carbon disulfide		ND	ug/m3	300	24	EPA-TO-15	ND	A01	1		
Carbon tetrachloride		ND	ug/m3	740	56	EPA-TO-15	ND	A01	1		
Chlorobenzene		ND	ug/m3	740	49	EPA-TO-15	ND	A01	1		
Chloroethane		ND	ug/m3	300	47	EPA-TO-15	ND	A01	1		
Chloroform		ND	ug/m3	740	37	EPA-TO-15	ND	A01	1		
Chloromethane		ND	ug/m3	300	43	EPA-TO-15	ND	A01	1		
Cyclohexane		ND	ug/m3	300	27	EPA-TO-15	ND	A01	1		
Dibromochloromethane		ND	ug/m3	740	64	EPA-TO-15	ND	A01	1		
,2-Dibromoethane		ND	ug/m3	740	61	EPA-TO-15	ND	A01	1		
,2-Dichlorobenzene		ND	ug/m3	740	58	EPA-TO-15	ND	A01	1		
,3-Dichlorobenzene		ND	ug/m3	740	90	EPA-TO-15	ND	A01	1		
I,4-Dichlorobenzene		ND	ug/m3	740	81	EPA-TO-15	ND	A01	1		
Dichlorodifluoromethane		ND	ug/m3	740	56	EPA-TO-15	ND	A01	1		
I,1-Dichloroethane		ND	ug/m3	740	41	EPA-TO-15	ND	A01	1		
,2-Dichloroethane		ND	ug/m3	740	31	EPA-TO-15	ND	A01	1		
I,1-Dichloroethene		ND	ug/m3	740	30	EPA-TO-15	ND	A01	1		
cis-1,2-Dichloroethene		ND	ug/m3	300	34	EPA-TO-15	ND	A01	1		
rans-1,2-Dichloroethene		ND	ug/m3	300	30	EPA-TO-15	ND	A01	1		
,2-Dichloropropane		ND	ug/m3	740	44	EPA-TO-15	ND	A01	1		
is-1,3-Dichloropropene		ND	ug/m3	740	34	EPA-TO-15	ND	A01	1		
rans-1,3-Dichloropropene		ND	ug/m3	740	44	EPA-TO-15	ND	A01	1		
,2-Dichloro-1,1,2,2-tetrafluc	proethane	ND	ug/m3	740	110	EPA-TO-15	ND	A01	1		
,1-Difluoroethane		ND	ug/m3	740	300	EPA-TO-15	ND	A01	1		
I,4-Dioxane		ND	ug/m3	300	80	EPA-TO-15	ND	A01	1		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior. Beauty and the party interpretation, detachment or third party interpretation. 1001047307 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-12	Client Sample	e Name:	Former Fairw	Former Fairway Cleaners, SV-6-d15, 4/1/2020 12:00:00AM, Harrison Hucks							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #			
Ethanol		ND	ug/m3	300	110	EPA-TO-15	ND	A01	1			
Ethyl acetate		ND	ug/m3	300	59	EPA-TO-15	ND	A01	1			
Ethylbenzene		ND	ug/m3	740	53	EPA-TO-15	ND	A01	1			
1-Ethyl-4-methylbenzene		ND	ug/m3	740	81	EPA-TO-15	ND	A01	1			
n-Heptane		ND	ug/m3	300	44	EPA-TO-15	ND	A01	1			
Hexachlorobutadiene		ND	ug/m3	1500	370	EPA-TO-15	ND	A01	1			
Hexane		ND	ug/m3	740	30	EPA-TO-15	ND	A01	1			
2-Hexanone		ND	ug/m3	740	50	EPA-TO-15	ND	A01	1			
Isopropyl alcohol		ND	ug/m3	300	70	EPA-TO-15	ND	A01	1			
Methylene chloride		ND	ug/m3	1500	36	EPA-TO-15	ND	A01	1			
Methyl ethyl ketone		ND	ug/m3	300	62	EPA-TO-15	ND	A01	1			
Methyl isobutyl ketone		ND	ug/m3	740	100	EPA-TO-15	ND	A01	1			
Methyl t-butyl ether		ND	ug/m3	300	53	EPA-TO-15	ND	A01	1			
Propylene		ND	ug/m3	300	59	EPA-TO-15	ND	A01	1			
Styrene		ND	ug/m3	740	56	EPA-TO-15	ND	A01	1			
1,1,2,2-Tetrachloroethane		ND	ug/m3	740	160	EPA-TO-15	ND	A01	1			
Tetrachloroethene		1500000	ug/m3	30000	5000	EPA-TO-15	ND	A01	2			
Tetrahydrofuran		ND	ug/m3	300	62	EPA-TO-15	ND	A01	1			
Toluene		300	ug/m3	300	28	EPA-TO-15	ND	A01	1			
1,2,4-Trichlorobenzene		ND	ug/m3	1500	86	EPA-TO-15	ND	A01	1			
1,1,1-Trichloroethane		ND	ug/m3	740	41	EPA-TO-15	ND	A01	1			
1,1,2-Trichloroethane		ND	ug/m3	740	41	EPA-TO-15	ND	A01	1			
Trichloroethene		1600	ug/m3	300	56	EPA-TO-15	ND	A01	1			
Trichlorofluoromethane		ND	ug/m3	740	44	EPA-TO-15	ND	A01	1			
1,1,2-Trichloro-1,2,2-trifluor	pethane	ND	ug/m3	740	58	EPA-TO-15	ND	A01	1			
1,2,4-Trimethylbenzene		ND	ug/m3	740	95	EPA-TO-15	ND	A01	1			
1,3,5-Trimethylbenzene		ND	ug/m3	740	220	EPA-TO-15	ND	A01	1			
Vinyl acetate		ND	ug/m3	300	46	EPA-TO-15	ND	A01	1			
Vinyl chloride		ND	ug/m3	300	43	EPA-TO-15	ND	A01	1			
p- & m-Xylenes		ND	ug/m3	740	120	EPA-TO-15	ND	A01	1			
o-Xylene		ND	ug/m3	740	78	EPA-TO-15	ND	A01	1			
Total Xylenes		ND	ug/m3	1500	210	EPA-TO-15	ND	A01	1			
4-Bromofluorobenzene (Su	rogate)	112	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alterior that detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported: 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-12	Client Sampl	e Name:	Former Fair	way Cleaners,	SV-6-d15, 4/1/2020	12:00:00AM, Harris	son Hucks	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
4-Bromofluorobenzene	(Surrogate)	109	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			2

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	04/07/20 08:56	04/07/20 19:54	BEP	MS-A1	148	B074789	EPA TO-15
2	EPA-TO-15	04/07/20 08:56	04/07/20 22:25	BEP	MS-A1	14800	B074789	EPA TO-15

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 **Reported:** 04/08/2020 14:55

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-13	Client Sampl	e Name:	Former Fairway Cleaners, DUP-A, 4/1/2020 12:00:00AM, Harrison Hucks							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Acetone		79	ug/m3	75	5.8	EPA-TO-15	ND	A01	1		
Acrylonitrile		ND	ug/m3	30	3.3	EPA-TO-15	ND	A01	1		
Allyl chloride		ND	ug/m3	30	3.9	EPA-TO-15	ND	A01	1		
Benzene		ND	ug/m3	30	2.4	EPA-TO-15	ND	A01	1		
Benzyl chloride		ND	ug/m3	150	9.4	EPA-TO-15	ND	A01	1		
Bromodichloromethane		ND	ug/m3	75	6.0	EPA-TO-15	ND	A01	1		
Bromoform		ND	ug/m3	150	11	EPA-TO-15	ND	A01	1		
Bromomethane		ND	ug/m3	30	8.2	EPA-TO-15	ND	A01	1		
1,3-Butadiene		ND	ug/m3	30	3.8	EPA-TO-15	ND	A01	1		
Carbon disulfide		ND	ug/m3	30	2.4	EPA-TO-15	ND	A01	1		
Carbon tetrachloride		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1		
Chlorobenzene		ND	ug/m3	75	5.0	EPA-TO-15	ND	A01	1		
Chloroethane		ND	ug/m3	30	4.8	EPA-TO-15	ND	A01	1		
Chloroform		ND	ug/m3	75	3.8	EPA-TO-15	ND	A01	1		
Chloromethane		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1		
Cyclohexane		ND	ug/m3	30	2.7	EPA-TO-15	ND	A01	1		
Dibromochloromethane		ND	ug/m3	75	6.4	EPA-TO-15	ND	A01	1		
1,2-Dibromoethane		ND	ug/m3	75	6.2	EPA-TO-15	ND	A01	1		
1,2-Dichlorobenzene		ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1		
1,3-Dichlorobenzene		ND	ug/m3	75	9.2	EPA-TO-15	ND	A01	1		
1,4-Dichlorobenzene		ND	ug/m3	75	8.2	EPA-TO-15	ND	A01	1		
Dichlorodifluoromethane		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1		
1,1-Dichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1		
1,2-Dichloroethane		ND	ug/m3	75	3.2	EPA-TO-15	ND	A01	1		
1,1-Dichloroethene		ND	ug/m3	75	3.0	EPA-TO-15	ND	A01	1		
cis-1,2-Dichloroethene		ND	ug/m3	30	3.4	EPA-TO-15	ND	A01	1		
trans-1,2-Dichloroethene		ND	ug/m3	30	3.0	EPA-TO-15	ND	A01	1		
1,2-Dichloropropane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1		
cis-1,3-Dichloropropene		ND	ug/m3	75	3.4	EPA-TO-15	ND	A01	1		
trans-1,3-Dichloropropene		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1		
1,2-Dichloro-1,1,2,2-tetrafluc	oroethane	ND	ug/m3	75	12	EPA-TO-15	ND	A01	1		
1,1-Difluoroethane		ND	ug/m3	75	30	EPA-TO-15	ND	A01	1		
1,4-Dioxane		ND	ug/m3	30	8.1	EPA-TO-15	ND	A01	1		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no reportality for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported:

Project: Air Samples - COELT

Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2	009861-13	Client Sampl	e Name:	Former Fair	Former Fairway Cleaners, DUP-A, 4/1/2020 12:00:00AM, Harrison Hucks							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #			
Ethanol		14	ug/m3	30	11	EPA-TO-15	ND	J,A01	1			
Ethyl acetate		ND	ug/m3	30	6.0	EPA-TO-15	ND	A01	1			
Ethylbenzene		81	ug/m3	75	5.4	EPA-TO-15	ND	A01	1			
1-Ethyl-4-methylbenzene		170	ug/m3	75	8.2	EPA-TO-15	ND	A01	1			
n-Heptane		18	ug/m3	30	4.5	EPA-TO-15	ND	J,A01	1			
Hexachlorobutadiene		ND	ug/m3	150	38	EPA-TO-15	ND	A01	1			
Hexane		53	ug/m3	75	3.0	EPA-TO-15	ND	J,A01	1			
2-Hexanone		ND	ug/m3	75	5.1	EPA-TO-15	ND	A01	1			
Isopropyl alcohol		220	ug/m3	30	7.0	EPA-TO-15	ND	A01	1			
Methylene chloride		ND	ug/m3	150	3.6	EPA-TO-15	ND	A01	1			
Methyl ethyl ketone		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1			
Methyl isobutyl ketone		ND	ug/m3	75	10	EPA-TO-15	ND	A01	1			
Methyl t-butyl ether		ND	ug/m3	30	5.4	EPA-TO-15	ND	A01	1			
Propylene		270	ug/m3	30	6.0	EPA-TO-15	ND	A01	1			
Styrene		ND	ug/m3	75	5.7	EPA-TO-15	ND	A01	1			
1,1,2,2-Tetrachloroethane		ND	ug/m3	75	16	EPA-TO-15	ND	A01	1			
Tetrachloroethene		130	ug/m3	30	5.1	EPA-TO-15	ND	A01	1			
Tetrahydrofuran		ND	ug/m3	30	6.3	EPA-TO-15	ND	A01	1			
Toluene		21	ug/m3	30	2.8	EPA-TO-15	ND	J,A01	1			
1,2,4-Trichlorobenzene		ND	ug/m3	150	8.7	EPA-TO-15	ND	A01	1			
1,1,1-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1			
1,1,2-Trichloroethane		ND	ug/m3	75	4.2	EPA-TO-15	ND	A01	1			
Trichloroethene		ND	ug/m3	30	5.7	EPA-TO-15	ND	A01	1			
Trichlorofluoromethane		ND	ug/m3	75	4.5	EPA-TO-15	ND	A01	1			
1,1,2-Trichloro-1,2,2-trifluor	pethane	ND	ug/m3	75	5.8	EPA-TO-15	ND	A01	1			
1,2,4-Trimethylbenzene		210	ug/m3	75	9.6	EPA-TO-15	ND	A01	1			
1,3,5-Trimethylbenzene		56	ug/m3	75	22	EPA-TO-15	ND	J,A01	1			
Vinyl acetate		ND	ug/m3	30	4.6	EPA-TO-15	ND	A01	1			
Vinyl chloride		ND	ug/m3	30	4.4	EPA-TO-15	ND	A01	1			
p- & m-Xylenes		240	ug/m3	75	12	EPA-TO-15	ND	A01	1			
o-Xylene		74	ug/m3	75	8.0	EPA-TO-15	ND	J,A01	1			
Total Xylenes		310	ug/m3	150	21	EPA-TO-15	ND	A01	1			
4-Bromofluorobenzene (Sur	rogate)	102	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			1			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b

Project Manager: Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	2009861-13	Client Sam	Client Sample Name:		eaners, DUP-A, 4/1/	ks		
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1		04/07/20 08:56	04/07/20 20:52		MS-A1	15	B074789	EPA TO-15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting parts analyted in account of each of the sclusive set of the submitting parts and the submitting parts and the sclusive set of t Report ID: 1001017397

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B074789						
Acetone	B074789-BLK1	ND	ug/m3	5.0	0.39	
Acrylonitrile	B074789-BLK1	ND	ug/m3	2.0	0.22	
Allyl chloride	B074789-BLK1	ND	ug/m3	2.0	0.26	
Benzene	B074789-BLK1	ND	ug/m3	2.0	0.16	
Benzyl chloride	B074789-BLK1	ND	ug/m3	10	0.63	
Bromodichloromethane	B074789-BLK1	ND	ug/m3	5.0	0.40	
Bromoform	B074789-BLK1	ND	ug/m3	10	0.71	
Bromomethane	B074789-BLK1	ND	ug/m3	2.0	0.55	
1,3-Butadiene	B074789-BLK1	ND	ug/m3	2.0	0.25	
Carbon disulfide	B074789-BLK1	ND	ug/m3	2.0	0.16	
Carbon tetrachloride	B074789-BLK1	ND	ug/m3	5.0	0.38	
Chlorobenzene	B074789-BLK1	ND	ug/m3	5.0	0.33	
Chloroethane	B074789-BLK1	ND	ug/m3	2.0	0.32	
Chloroform	B074789-BLK1	ND	ug/m3	5.0	0.25	
Chloromethane	B074789-BLK1	ND	ug/m3	2.0	0.29	
Cyclohexane	B074789-BLK1	ND	ug/m3	2.0	0.18	
Dibromochloromethane	B074789-BLK1	ND	ug/m3	5.0	0.43	
1,2-Dibromoethane	B074789-BLK1	ND	ug/m3	5.0	0.41	
1,2-Dichlorobenzene	B074789-BLK1	ND	ug/m3	5.0	0.39	
1,3-Dichlorobenzene	B074789-BLK1	ND	ug/m3	5.0	0.61	
1,4-Dichlorobenzene	B074789-BLK1	ND	ug/m3	5.0	0.55	
Dichlorodifluoromethane	B074789-BLK1	ND	ug/m3	5.0	0.38	
1,1-Dichloroethane	B074789-BLK1	ND	ug/m3	5.0	0.28	
1,2-Dichloroethane	B074789-BLK1	ND	ug/m3	5.0	0.21	
1,1-Dichloroethene	B074789-BLK1	ND	ug/m3	5.0	0.20	
cis-1,2-Dichloroethene	B074789-BLK1	ND	ug/m3	2.0	0.23	
trans-1,2-Dichloroethene	B074789-BLK1	ND	ug/m3	2.0	0.20	
1,2-Dichloropropane	B074789-BLK1	ND	ug/m3	5.0	0.30	
cis-1,3-Dichloropropene	B074789-BLK1	ND	ug/m3	5.0	0.23	
trans-1,3-Dichloropropene	B074789-BLK1	ND	ug/m3	5.0	0.30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	B074789-BLK1	ND	ug/m3	5.0	0.77	
1,1-Difluoroethane	B074789-BLK1	ND	ug/m3	5.0	2.0	
1,4-Dioxane	B074789-BLK1	ND	ug/m3	2.0	0.54	
Ethanol	B074789-BLK1	ND	ug/m3	2.0	0.74	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b Project Manager: Harrison Hucks

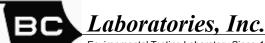
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B074789						
Ethyl acetate	B074789-BLK1	ND	ug/m3	2.0	0.40	
Ethylbenzene	B074789-BLK1	ND	ug/m3	5.0	0.36	
1-Ethyl-4-methylbenzene	B074789-BLK1	ND	ug/m3	5.0	0.55	
n-Heptane	B074789-BLK1	ND	ug/m3	2.0	0.30	
Hexachlorobutadiene	B074789-BLK1	ND	ug/m3	10	2.5	
Hexane	B074789-BLK1	ND	ug/m3	5.0	0.20	
2-Hexanone	B074789-BLK1	ND	ug/m3	5.0	0.34	
Isopropyl alcohol	B074789-BLK1	ND	ug/m3	2.0	0.47	
Methylene chloride	B074789-BLK1	ND	ug/m3	10	0.24	
Methyl ethyl ketone	B074789-BLK1	ND	ug/m3	2.0	0.42	
Methyl isobutyl ketone	B074789-BLK1	ND	ug/m3	5.0	0.70	
Methyl t-butyl ether	B074789-BLK1	ND	ug/m3	2.0	0.36	
Propylene	B074789-BLK1	ND	ug/m3	2.0	0.40	
Styrene	B074789-BLK1	ND	ug/m3	5.0	0.38	
1,1,2,2-Tetrachloroethane	B074789-BLK1	ND	ug/m3	5.0	1.1	
Tetrachloroethene	B074789-BLK1	ND	ug/m3	2.0	0.34	
Tetrahydrofuran	B074789-BLK1	ND	ug/m3	2.0	0.42	
Toluene	B074789-BLK1	ND	ug/m3	2.0	0.19	
1,2,4-Trichlorobenzene	B074789-BLK1	ND	ug/m3	10	0.58	
1,1,1-Trichloroethane	B074789-BLK1	ND	ug/m3	5.0	0.28	
1,1,2-Trichloroethane	B074789-BLK1	ND	ug/m3	5.0	0.28	
Trichloroethene	B074789-BLK1	ND	ug/m3	2.0	0.38	
Trichlorofluoromethane	B074789-BLK1	ND	ug/m3	5.0	0.30	
1,1,2-Trichloro-1,2,2-trifluoroethane	B074789-BLK1	ND	ug/m3	5.0	0.39	
1,2,4-Trimethylbenzene	B074789-BLK1	ND	ug/m3	5.0	0.64	
1,3,5-Trimethylbenzene	B074789-BLK1	ND	ug/m3	5.0	1.5	
Vinyl acetate	B074789-BLK1	ND	ug/m3	2.0	0.31	
Vinyl chloride	B074789-BLK1	ND	ug/m3	2.0	0.29	
p- & m-Xylenes	B074789-BLK1	ND	ug/m3	5.0	0.83	
o-Xylene	B074789-BLK1	ND	ug/m3	5.0	0.53	
Total Xylenes	B074789-BLK1	ND	ug/m3	10	1.4	
4-Bromofluorobenzene (Surrogate)	B074789-BLK1	93.6	%	70 - 13	0 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.


Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076 Reported:04/08/202014:55Project:Air Samples - COELTProject Number:Former Fairway Cleaners - 2T009bProject Manager:Harrison Hucks

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

	,		•				•			
								Control I	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: B074789										
Benzene	B074789-BS1	LCS	14.613	15.974	ug/m3	91.5		70 - 130		
	B074789-BSD1	LCSD	14.820	15.974	ug/m3	92.8	1.4	70 - 130	30	
Chloroform	B074789-BS1	LCS	24.379	24.413	ug/m3	99.9		70 - 130		
	B074789-BSD1	LCSD	25.150	24.413	ug/m3	103	3.1	70 - 130	30	
Ethylbenzene	B074789-BS1	LCS	20.126	21.711	ug/m3	92.7		70 - 130		
	B074789-BSD1	LCSD	20.095	21.711	ug/m3	92.6	0.2	70 - 130	30	
Tetrachloroethene	B074789-BS1	LCS	31.844	33.913	ug/m3	93.9		70 - 130		
	B074789-BSD1	LCSD	32.522	33.913	ug/m3	95.9	2.1	70 - 130	30	
Toluene	B074789-BS1	LCS	17.764	18.842	ug/m3	94.3		70 - 130		
	B074789-BSD1	LCSD	17.780	18.842	ug/m3	94.4	0.1	70 - 130	30	
Trichloroethene	B074789-BS1	LCS	25.525	26.869	ug/m3	95.0		70 - 130		
	B074789-BSD1	LCSD	25.735	26.869	ug/m3	95.8	0.8	70 - 130	30	
Trichlorofluoromethane	B074789-BS1	LCS	30.704	28.092	ug/m3	109		70 - 130		
	B074789-BSD1	LCSD	31.227	28.092	ug/m3	111	1.7	70 - 130	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	B074789-BS1	LCS	38.425	38.318	ug/m3	100		70 - 130		
	B074789-BSD1	LCSD	39.429	38.318	ug/m3	103	2.6	70 - 130	30	
p- & m-Xylenes	B074789-BS1	LCS	42.014	43.421	ug/m3	96.8		70 - 130		
	B074789-BSD1	LCSD	42.991	43.421	ug/m3	99.0	2.3	70 - 130	30	
o-Xylene	B074789-BS1	LCS	20.768	21.711	ug/m3	95.7		70 - 130		
	B074789-BSD1	LCSD	21.298	21.711	ug/m3	98.1	2.5	70 - 130	30	
Total Xylenes	B074789-BS1	LCS	62.783	65.132	ug/m3	96.4		70 - 130		
	B074789-BSD1	LCSD	64.290	65.132	ug/m3	98.7	2.4	70 - 130	30	
4-Bromofluorobenzene (Surrogate)	B074789-BS1	LCS	78.4	71.6	ug/m3	109		70 - 130		
	B074789-BSD1	LCSD	79.7	71.6	ug/m3	111	1.6	70 - 130		
										-

Quality Control Report - Laboratory Control Sample

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Weber, Hayes & Associates 120 Westgate Drive Watsonville, CA 95076

04/08/2020 14:55 Reported: Project: Air Samples - COELT Project Number: Former Fairway Cleaners - 2T009b Project Manager: Harrison Hucks

Notes And Definitions

J	Estimated Value (CLP Flag)

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1001017397